www.illustratingshadows.com
extracts from lllustrating Times Shadow

www.illustratingshadows.com Simon Wheaton-Smith Feb 12,2013

DELTA CAD VERSION 7 [Willx (@l B s =N 1® s

no problems even with the largest macros

DELTA CAD VERSION 7 [Wills Szl =0" N =y B Ny

DeltaCAD crashes when running the larger macros if you have
applied the 2013 patch

DELTA CAD VERSION 8 [NS=pilgl=0a== v oN sy Ni® s

no problems even with the largest macros

but crashes if you do not apply the Feb 12, 2013 patch

This may be copied or distributes provided the credit to lllustrating Shadows is retained
June 14, 2010 Simon Wheaton-Smith

www.illustratingshadows.com June 14, 2010

extracts from lllustrating Times Shadow
SOME NOTES ON PROGRAMMING DELTA-CAD

Because a lot of diallists use DeltaCAD, a few projects in this book used Delta CAD macros
whose resulting dial plates were printed, cut out, and placed on clay and used as templates. The
reason for using DeltaCAD was first because it is popular, second because the printed dial plates
can be cut and used over clay to mark hour or calendar lines. The author mostly uses glass, clay,
and copper on his outside dials.

The author's first career before winding up as an airline pilot was in programming computers.
Some work was commercial, but most work was in operating system software. The first system
he programmed was an IBM 1401 in Autocoder. Then an IBM 360 in BAL (Basic Assembler
Language), with a bit of PL/I, and FORTRAN. All his work on the IBM 370 and later machines
was in BAL and on some other machines he used C and C++. Operating systems used were
BOS, MFT, and MVT on the IBM 360s, and VS1 and MVS on the IBM 370s, and GCS under VM .

One pet peeve the author has is that documentation for languages is drawn up by programmers
as language specifications, and when the human interface is covered it is always somewhat
academic. This tendency became worse when object oriented programming became the standard
because the novice is faced with several struggles. Thus the examples in this section for the
BASIC macro language for Delta CAD are intended to be "conversational" as opposed to
transaction oriented. In other words less object oriented and more of a natural flow. As
background, the author designed FIDO and PATCHES which were early spooling systems on
IBM 360 mainframes in the 1970s, and TOTO and later SHADOW which were teleprocessing
programs running under DOS and MVS on the IBM 370 and later ranges which were sold
worldwide from 1972 until 1997. SHADOW in particular made over $55m in sales before the
author lost track and interest.

Older style conversational programs had a natural flow, assumed a sequence of events, and
were less well suited to random events controlling the program flow. The next development was
transaction oriented programs which used discrete pieces of code invoked when things
happened. Less natural, more adaptable to random events controlling program flow, and could
still easily be made to look conversational if so desired. Then came object oriented code, here
"objects" were defined which had "methods" associated with them which handled "things" that
affected the objects. Objects were defined by "classes" with an inheritance structure, and inter-
relationships between objects. Thus one simple change here would trigger many "methods" in
many "objects" resulting in lots of activity. Hard to make conversational, but highly generalized
and ideally suited for random events coming in (a screen input, an interrupt from an outside
source), but clearly not a simple natural program flow.

USING A CAD SYSTEM and USING CAD MACROS

A CAD system is a computer program that draws, usually better than the average human. The 2d
systems such as Delta CAD are simple to use and provide professional draftings. The author
prefers TurboCAD deluxe which is a full 3d modeling system and which was used for most of the
pictorials in this series of books. It also has excellent after the fact dimensioning tools. DeltaCAD
leads TurboCAD in having the computer do all of the work, including calculating angles and then
drawing them. TurboCAD programming is only available in the Professional edition. Computers
do what they are told and thus special techniques are needed to do simple things a human can
intuitively do, such as constraining a line to the boundaries of a box.

This has a few pointers to help write macros. Writing macros for DeltaCAD is within reach of any
computer literate person. To simplify concepts, code in this chapter is extracted and reduced from
the programs on the CD or website and thus may not handle some special cases.

This may be copied or distributes provided the credit to lllustrating Shadows is retained
June 14, 2010 Simon Wheaton-Smith

www.illustratingshadows.com
extracts from lllustrating Times Shadow

This section extracts some code and explains what it is doing, and shows final resulting dial
plates. There are many macros available for Delta CAD which are well worth exploring. The
author has his own versions of Delta CAD macros on the web site for those who are interested,
and these complement the spreadsheets which are also made available. However, these
spreadsheets and macros which are fully functional are aimed at education first and foremost,
and as a tool second. They are not polished works, they are not intended to produce final
polished products, nor are they intended to compete with the excellent macros available.

Programs usually begin with initial setup, then they define variables to hold information being
worked on, and they also ask humans what they want, and finally they produce the results.

LR EEEEEEEEEEEEEEEEEEEEEEEEREREEREEREEEEEREREREEREREEREEREEEEEEERESEESEESEESEESESESESESESEES]

!
' A horizontal dial macro for Delta CAD but in conversational mode as
' opposed to the more modern object oriented mode, but with notes
!
T

page numbers refer to Manual.pdf or Basic.pdf provided with delta cad
LR EEEEEEEE RS SRR R R E R R R R R R R EEEEEEEEEESS]

Sub Main () ' main procedure is required

1 LR R R R R R R S RS RS

' Initial house keeping - clear the screen - set the drafting area unit
1 LR EEEEEE R R EEEEE R R R R R R R R R R EEEREEEEEEEES]

' select all objects that may exist on the screen - p223 of Manual
' then erase them all - page 189 of Manual

If (dcSelectAll) Then
dcEraseSelObjs
End If

' set the entire future drafting area to inches or centimeters, etc
' page 43 of the Manual: 1.0 generates inches, and 2.54 is cm

dcSetDrawingScale 0.80

At this point, a few thoughts on hard coded numbers, specific dimensions and programming
practice are relevant.

Good program practice is not to code numbers inline in a program, rather, those numbers should
be in a data definition area. This makes the program easier to change, however, it also makes the
program a little harder to understand.

It is similarly bad practice to define display areas, as this program does, of say 0,0 to 1,1
however, if the end result is scalable there is little harm, however good practice would still use
symbolic numbers, with those defined in the data definition area.

Programming practice has been for many years to use structured coding techniques, that is IF-
END IF, DO-END DO, FOR NEXT, and the like, and never to use the GOTO statements.

Another more recent architecture of programming systems has been to move towards object
oriented methods, where an object not only holds the data, but also the methods for altering or
reading it. And further, all objects can have inter-relationships, so if something changes that might
affect one object, then that and other objects will find out and act accordingly. For example, in
Windows bring up two displays of the same folder, and in one display, delete an entry. Object
oriented methods are what cause the other folder display to update itself and reflect the first
display's changed status.

While BASIC as supplied with Delta CAD is not fully object oriented, it does use some of its
concepts, for example the structures needed to talk with humans. Next some programming
structures are needed for human interaction. These are not difficult, neither are they quite as
simple as elementary BASIC.

This may be copied or distributes provided the credit to lllustrating Shadows is retained
June 14, 2010 Simon Wheaton-Smith

www.illustratingshadows.com
extracts from lllustrating Times Shadow

LR EEEEEEEEEEEEEEEEEEEEEEREEEREEREREREREEEREEREREEREEEREEEEEREEREESEESEESEESEESESESESEESEES]

A generic definition is required for a screen input area
IEE R R R R R R R R R E R R RS RS EEE R R EEEEEREREEEREEEEEEEEEEEEEEREE]

Here a box on the screen for user dialog is structurally defined,
it is only a definition of the generic area, it does not create it
..... Dialog aaaaa

1

T

1

1

T

1

1

T

' To create the area, there must be a Dim statement making a label
' relate to this definition

L Dim bbbbb as aaaaa

1
'
T
1
'
T
1

To use bbbbb there must be a yyy = Dialog (xxxxx) which causes
human interaction. So...

create an area on the screen starting at x=20, y=20
whose size is 200 left to right and 100 top to bottom
whose title is "Location" - where 0,0 is top left

Begin Dialog aaaaa 20, 20, 200,100, "Location"

' the first text string starts at x=5,y=15 on the screen

' and the text string itself starts at x=60 for a height of 10
Text 5, 15, 60,10, "Enter latitude"

' the input area starts at x=65 (further right) y=15 (same height) for a
' size of x=50, y=10
TextBox 65, 15, 50, 10, .mylat

' the second text string starts at x=5 but now y=30, i.e. lower down
' and the text string itself starts at x=60 for a height of 10
Text 5, 30, 60, 10, "Enter longitude"

' and the input area starts at x=65 (further right) y=30
' (same height) for a size of x=50, y=10
TextBox 65, 30, 50, 10, .mylng

' the third text string starts at x=5 y=45
' and the text string itself starts at x=60 for a height of 10

Text 5, 45, 60, 10, "Enter ref longitude"
' and the input area starts at x=65 y=30 for a size of x=50, y=10
TextBox 65, 45, 50, 10, .myref
' and two buttons for what the user means, location first, button size
' next - and all such boxes must have at least one button by the way
OKButton 65, 65, 40, 10
CancelButton 65, 85, 40, 10
End Dialog

At this point, a few comments might be helpful. The Begin Dialog has nothing to do with a dialog.
It is an encyclopedia definition of what you might wish to actually create.

It is created with the Dim statement.

LR EEEEEEEEEEEEEEREEEEEREEREEREEREREREREREREEREEEREREEREEREEEREEEEREEREESEEREESESESESEESEESESESES]

1
' The generic definition must then be generated with a name

IR S SRS RS RS E SRS RS R RS E R RS SRR SRR SRR ER R REEEREREEEEEEEEEEESEEEEESS]
1

T

this defines "bbbbb" as an instance of aaaaa dialog
Dim bbbbb As aaaaa

And used later.....

LR EEEEEEEEEEEEEEREEEEEREEEEREEREREREREREREEREEEREREREREEREREREEEEREEEEREEEESEESESEESEESSESES]

Now define the initial general working variables
IR R R R R R R R S S R EEE S

' define a lat and a long, and a reference longitude
Dim lat As single
Dim lng As single
Dim ref As single

... continued on the next page

This may be copied or distributes provided the credit to lllustrating Shadows is retained
June 14, 2010 Simon Wheaton-Smith

www.illustratingshadows.com
extracts from lllustrating Times Shadow

. continued from the last page

LI R R R R R R R R R R R R R R R R RS R E R R R R R R EEREEEEEEEESES

' Now get the lat, long, and reference longitude
1 LR EEEEEEEEEEEEEEREEEEEREREEREEREEREREREEEREEEREREEREEREREREEEEREEREEREEREESESESESEESEESESESES]

' first set the defaults - here bbbbb.mylat uses the structure
' from aaaaa

bbbbb.mylat = "32.75"
bbbbb.mylng = "108.2"
bbbbb.myref = "105.0"

......... , in fact here it is being used!

' here the dialog is invoked and the button results returned to ccccc
' page 20 and 24 etc of Basic discusses the Dialog function

cccce = Dialog (bbbbb)

' which causes the answer to be returned

lat = bbbbb.mylat

1lng = bbbbb.mylng

ref = bbbbb.myref

' CANCEL button returns 0

' OK button returns -1

' you can determine the button with - Print ccccc, lat, 1lng, ref

HORIZONTAL DIAL

The rest of the program is straight forward.

I R R SRR R R R R R R R R R R R EEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEREEEEEEERES]

' ok, what was returned? if "ok button" then do the program itself
1 dhkhkhkhkhkhkdhkhdhkhkhkhkhkdhhdhhdhhhhhdhhdbhdhhhkdhhbdhhdhkhkhkhkdhhdhkdhhkhkdhkdhkdhkdkhkhkdhhkdhkdhkhhhdhdkkx

' ccccc = -1 means the ok button was used and not the cancel button
If ccccc = -1 Then

U S R R R R R R R R R R R R R R SRR R R E R R R R E R EEEEEEEET

' this is the main program to draw the horizontal dial itself
IR S S SRS RS RS E SRR RS R R SRR RS RE SRR EEEREERREREEEEEEEEEEEEEESESESE]

' calculate hour line angles next, but first define them
Dim h, hx, hy As Single ' Delta CAD is fussy about data attributes

' the formula is... hourlineangle = atan (sin(lat) * tan (lha))
' almost all systems us radians
' the formula also needs adjustment for longitude displacement

' line color 1is 0 is black
' line type is dcsolid
' line weight is dcnormal

' set the text color, font, size, etc also

dcSetTextParms dcBLACK, "Ariel","Bold",0,8, 20,0,0 ' p321 of Manual
dccreatetext -1.25, -0.3, 0, "Hour and hour line angle H-DIAL"
dccreatetext -1.25, -0.9, 0, "Lat: "

dccreatetext -0.8, -0.9, 0, Int(lat)

dccreatetext 0.0, -0.9, 0, "Long: "

dccreatetext 0.3, -0.9, 0, Int(lng)

' for the hour (hr) calculate the hour line angle (h)
h = deg(Atn(Sin(rad(lat))*Tan(rad((hr*15) +(ref-1ng)))))

' show the time in hours

dcSetTextParms dcBLACK, "Ariel","Bold",0,8, 21,0,0 ' p321 Manual
dccreatetext (-1.2+((hr-6)/5)), -0.5, 0, Abs(hr)

' show the angle

dcSetTextParms dcBLACK, "Ariel","Bold",0,6, 21,0,0 ' p321 Manual
dccreatetext (-1.2+((hr-6)/5)), -0.7, 0, Int(h)

This may be copied or distributes provided the credit to lllustrating Shadows is retained
June 14, 2010 Simon Wheaton-Smith

www.illustratingshadows.com
extracts from lllustrating Times Shadow

' morning hours ~ NOTE code for keeping lines in a boxed area
1

dcsetlineparms dcblue,dcsolid,dcthin ' page 228 Manual

If Abs(h) < 45 Then ' lines touch top of box
dcSetTextParms dcBLACK, "Ariel", "Bold",0,8,21,0,0 ' p321
hx = Tan(rad((h)))
dccreateline 0, 0, hx, 1

dccreatetext (hx), 1.1 0, Abs(hr) ' page 187 of Manual
Else ' lines touch side of box

dcSetTextParms dcBLACK, "Ariel", "Bold",0,8, 20,0,0 ' p321

hy = Tan(rad((90-h)))

dccreateline 0, 0, -1, -hy

dccreatetext -1.1, -hy, 0, Abs(hr) ' page 187 of Manual
End If

ElseIf hr = 12 Then

' noon hours

The program concludes with drawing a couple of boxes.

' draw a box around everything

dccreatebox -1, 0, 1, 1 ' page 184 Manual

dccreatebox -1.2, -.2, 1.2, 1.2 ' page 184 Manual

dcviewbox -1.1, -1.1, 1.1, 1.3 ' page 225 Manual
End If

I R RS SRR EE R R R R R R R R R RS EEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEREEEEEERES]

' *** this ends the entire program
1 R R R R R R RS R SRS

End Sub

And after the end of the program, there are the DEGREES and RADIANS functions.

LR RS EEEEEEE

1
' Useful routines or functions - Functions must be defined at the end
' after the main program which is sub(xx) ... end sub

IR S S S S EEE RS SRR SRR R SRR R SRR R R SRR R R SRR R R R REEEEREEEEEEEEEEEEEEEESEEE]

' Convert degrees to radians

Function Rad (n As single) As single
' page 83 basic.pdf for functions
Rad = (n * 2 * 3.14159) / 360

End Function

' Convert radians to degrees
Function Deg (n As single) As single
' page 83 basic.pdf for functions
Deg = (360 * n) / (2 * 3.14159)
End Function

The actual code on the web site may differ and have code to correct for certain situations,
however, the objective here has been to step through most of the procedural coding. There are
some coding violations, however they have been somewhat intentional in order to make the
process of a complete macro, when accompanied by DeltaCAD's two books, MANUAL.PDF and
BASIC.PDF, more understandable.

This may be copied or distributes provided the credit to lllustrating Shadows is retained
June 14, 2010 Simon Wheaton-Smith

www.illustratingshadows.com
extracts from lllustrating Times Shadow

PRINTING TECHNIQUES ~ ~ ~ FOR DIAL PLATES LARGER THAN PRINT PAPER SIZE

Once you have a DeltaCAD macro executed and a dial plate depicted, printing is easy.

Z-DIAL Lat: 32 Long: 108 ref 105

FILE
PRINT SETUP
select printer
select properties 12
landscape or portrait ; " War/Sep Equ
OK SN

S. Sol

FILE 5%
SET PRINT REGION

check portrait or landscape

set print scale so that the
result is the final
size you want,
recall that paper
is often 8.5 x 11
inches. The left
used a print scale
of 0.1 and needed
12 sheets, this would
be a big dial, the
right used a scale
of 0.3 and used 2
sheets and the final
dial plate size can be
visually estimated.

FILE
PRINT

The above process can be used to print dial plates using DeltaCAD for dials larger than the print
paper size. CAUTION: Some screen capture programs do not accurately preserve aspect ratios,
so be careful if you use a screen captured layout and paste it into a word processor.

This may be copied or distributes provided the credit to lllustrating Shadows is retained
June 14, 2010 Simon Wheaton-Smith

www.illustratingshadows.com
extracts from lllustrating Times Shadow

PRINTING TECHNIQUES ~ ~ ~ PRINTING A SMALL PART OF A DIAL PLATE

This is typically declining vertical dials facing about east or west

Once you have the dial plate drawn, as shown to the left, use

DeltaCAD VIEW (top row, not third row of tabs in DeltaCAD)
and then zoom to get the area you desire.

If you use screen capture, beware that some capture
programs may distort DeltaCAD angles. The angles
in DeltaCAD are correct as tabulated and as P
displayed. &

Because of hour line bunching, use the following print
technique:

12

Hour and hour line angle VERTICAL DECLINER

VIEW (third row, not top row) then
VIEW OBJECT IN RECTANGLE and draw its rectangle I:l
FILE then SET PRINT REGION and in that box...
in PRINTAREA do SET TO CURRENT WINDOW—
you may enter print scale numbers also
FILE then PRINT PREVIEW and then you may print

6 7 8 9 10 11 12

[W

VIEW on top row

< DeltaCad - [Shee. , *]
@File Edit Draw \iew ©Options Window Help

view [EI JALFSSE 1 1) [Gowr] [
_Select b Edit) View {Point § Line y Circle y Shapes § Text 3 _Dim

4

| |
VIEW on third row

OBJECT IN RECTANGLE

The above process can be used to print dial plates using DeltaCAD for dials smaller than the
displayed size. CAUTION: Some screen capture programs do not accurately preserve aspect
ratios, so be careful if you use a screen captured layout and paste it into a word processor.

This may be copied or distributes provided the credit to lllustrating Shadows is retained
June 14, 2010 Simon Wheaton-Smith

www.illustratingshadows.com
extracts from lllustrating Times Shadow

NOTES ABOUT ISSUES WITH DELTACAD
1. SCRIPT ERROR

NOTE: The command STOP causes a BASIC SCRIPT ERROR, use EXIT FUNCTION or some
equivalent instead. October 25, 2009

2. TEXT REVERSAL

NOTE: In DeltaCAD prior to version 7, when a CAD drawing was mirrored, then the text location
was mirrored, however the text itself stayed un mirrored. This made sense. The mirror function is
used in the following macros:

calendarDeclination.bas
MAIN-m-dials.bas
MAIN-m-dials[f].bas

and prior to version 7, they worked well. With version 7, the text itself, not just the location was
reversed. While DeltaCAD version 7 allows mirroring not to mirror the actual text itself in a CAD
drawing

SELECT
OPTIONS (on right hand side, not on top bar)
MIRROR TEXT LOCATION ONLY

this is cancelled when a macro is started. | changed the macros using mirroring to at least correct
some of the text, however, short of using a stack for the other text, sadly the hour line markings
are mirrored text. The lines themselves are correct, just the text needs to be rotated. | tried to add
a loop that selected each object, and if text then to extract the x,y location and the text, and then
delete the object and then add a new object back in with that saved text at the saved x,y location.
That didn't work. | emailed the DeltaCAD developer and he said a fix would be coming along
either in the next DeltaCAD version or as an update.

3. TYPE MISMATCH
NOTE: In DeltaCAD version 7, the following code works well
Dim xxx as single
xxx =10
yyy = mycode(-XxX)
but in version 6 it fails with a “TYPE MISMATCH?". The solution in the call using the “-xxx" is:-

yyy = mycode((xxx*-1))

This may be copied or distributes provided the credit to lllustrating Shadows is retained
June 14, 2010 Simon Wheaton-Smith

