

PERL

Practical Extraction and Report Language

Programming examples but in
text form as opposed to
graphics

Primarily using ActiveState from:

 www.activestate.com/activeperl

and nothing more involved than the Windows notepad or
wordpad editors, and double clicking the hDial.pl or vDial.pl
resulting programs. ActiveState was chosen as it was
simple, installed, and worked first time. THEN after basic
experience was gained, then the IDE was used; note that
the IDE does not display prompts (for latitude etc) until after
the inputs are entered!!.

Strawberry Perl was not used as it did not offer benefits
over ActiveState, and seemed to be too Unix oriented.

please check regularly for updates at:

www.illustratingshadows.com/b3/programmingShadows.pdf

which has excellent hints for Perl and the IDE

Simon Wheaton-Smith

www.illustratingshadows.com
January 11, 2014

TWO CHOICES…

 StrawberryPerl
or
 ActiveState

I chose ActiveState, it installed first time, had the additional libraries (math, GD, etc) and worked.
And the IDE choses also worked with it well.

PERL programming ~ StrawberryPerl ~ I did not use this, I used ActiveState instead

http://www.perl.org/get.html

http://strawberryperl.com/

 strawberry-perl-5.12.3.0.msi

Strawberry Perl 5.12.3.0 README
===============================

What is Strawberry Perl?

* 'Perl' is a programming language suitable for writing simple scripts as well
 as complex applications. See http://perldoc.perl.org/perlintro.html

* 'Strawberry Perl' is a perl enviroment for Microsoft Windows containing all
 you need to run and develop perl applications. It is designed to be as close
 as possible to perl enviroment on UNIX systems. See http://strawberryperl.com/

Installation instructions: (.zip distribution only)

* If installing this version from a .zip file, you MUST extract it to a
 directory that does not have spaces in it (referred to as <directory>
 below) and then run some commands and manually set some environment
 variables:

 cd <directory>
 perl\bin\perl.exe relocation.pl.bat
 perl\bin\perl.exe update_env.pl.bat

 (You can specify " --nosystem" after update_env.pl.bat to install Strawberry
 Perl's environment variables for the current user only.)

* If having a fixed installation path does not suit you, go to
 http://strawberryperl.com/releases.html and try "Strawberry Perl Portable
 Edition"

How to use Strawberry Perl?

* In the command prompt window you can:

 1. run any perl script by launching

 c:\> perl c:\path\to\script.pl

 2. install additional perl modules (libraries) from http://www.cpan.org/ by

 c:\> cpan Module::Name

 3. run other tools included in Strawberry Perl like: perldoc, gcc, dmake ...

* You'll need a text editor to create perl scripts. One is NOT included with
Strawberry Perl. A few options are Padre (which can be installed by running
"cpan Padre" from the command prompt for 32-bit versions) and Notepad++
(which is downloadable at notepad-plus.sourceforge.net), which both include
syntax highlighting for perl scripts. You can even use Notepad, if you wish.

PERL programming ~ ActiveState ~ I used this, I did not use StrawberryPerl

OR . . .

www.activestate.com/activeperl

USING ActiveState from “www.activestate.com/activeperl“:-

and documentation from

http://perldoc.perl.org/Math/Trig.html#TRIGONOMETRIC-FUNCTIONS

http://alvinalexander.com/blog/post/perl/reference-page-perl-printf-formatting-
format-cheat-sheet

The following is a text only horizontal dial program

A horizontal sundial with a longitude correction, text only
www.illustratingshadows.com
January 4, 2013

use English;
http://perldoc.perl.org/Math/Trig.html#TRIGONOMETRIC-FUNCTIONS
use Math::Trig; # needs "use Math::Trig;" as "atan2" is worthless
 # also TAN is in math.trig, otherwise you must
 # do sin/cos. But the big deal is TAN vs ATAN2

print "\n*** Illustrating Shadows PERL *** hDial Jan 5, 2014\n";

print "\nEnter a latitude as nn.n ";
$latitude = readline(*STDIN);

print "\nEnter a longitude offset (+ is west, - is east) as nn.n ";
$longitude = -readline(*STDIN);

$slat = sin($latitude*2*3.14159/360);

$hr=-6;
while ($hr<7) { # NOTE: ctrl-C will break a loop in Windows 8

 # following does not need "use Math::Trig;" however, it is needed for ATAN etc
 # $hlaTAN = $slat ;
 # $hlaTAN = $hlaTAN * sin(15*($hr+($longitude*4/60)))*2*3.14159/360) ;
 # $hlaTAN = $hlaTAN / cos(15*($hr+($longitude*4/60)))*2*3.14159/360) ;

 $hlaTAN = $slat * Math::Trig::tan(15*($hr+($longitude*4/60))*2*3.14159/360);

 $hla = atan($hlaTAN); # needs "use Math::Trig;" as "atan2" is worthless
 $hla = $hla*360/(2*3.14159);

 # http://alvinalexander.com/blog/post/perl/reference-page-perl-printf-
formatting-format-cheat-sheet
 print "\nhour is: " , $hr+12 ," hour line angle is: ";
 printf("%.2f", $hla);

 $hr = $hr + 1;
}

print "\nbye.\n";
$latitude = readline(*STDIN); # any old input to pause screen
end #

 Hour line angles for
Horizontal hour
line

 TIME OF DAY simple dials
angles with long
corr

am pm HORIZONTAL am pm
12.00 12.00 0.00 3.93 -3.93
11.50 0.50 4.16 8.18 0.22
11.00 1.00 8.41 12.63 4.38
10.50 1.50 12.88 17.41 8.64
10.00 2.00 17.68 22.66 13.12

9.50 2.50 22.95 28.56 17.94
9.00 3.00 28.90 35.34 23.25
8.50 3.50 35.73 43.25 29.24
8.00 4.00 43.71 52.57 36.12
7.50 4.50 53.11 63.48 44.17
7.00 5.00 64.10 75.89 53.66
6.50 5.50 76.58 89.28 64.74
6.00 6.00 90.00 -77.28 77.28

 These have no These have

longitude
correction

longitude
correction

USING ActiveState from “www.activestate.com/activeperl“:-

and documentation as before, the following is a text only horizontal dial program

A vertical sundial with a longitude correction, text only
www.illustratingshadows.com
January 5, 2013
converted from the hDial Perl program, see ... "# change here for h->v Dial"
notes

use English;
http://perldoc.perl.org/Math/Trig.html#TRIGONOMETRIC-FUNCTIONS
use Math::Trig; # needs "use Math::Trig;" as "atan2" is worthless
 # also TAN is in math.trig, otherwise you must
 # do sin/cos. But the big deal is TAN vs ATAN2

print "\n*** Illustrating Shadows PERL *** vDial Jan 5, 2014\n";

print "\nEnter a latitude as nn.n ";
$latitude = 90-readline(*STDIN); # changed to co-latitude

print "\nEnter a longitude offset (+ is west, - is east) as nn.n ";
$longitude = readline(*STDIN); # remove "-" as moving from h->vDial

$slat = sin($latitude*2*3.14159/360);

$hr=6; # change here for h->v Dial
while ($hr>-7) { # change here for h->v Dial

 # following does not need "use Math::Trig;" however, it is needed for ATAN etc
 # $hlaTAN = $slat ;
 # $hlaTAN = $hlaTAN * sin(15*($hr+($longitude*4/60)))*2*3.14159/360) ;
 # $hlaTAN = $hlaTAN / cos(15*($hr+($longitude*4/60)))*2*3.14159/360) ;

 $hlaTAN = $slat * Math::Trig::tan(15*($hr+($longitude*4/60))*2*3.14159/360);

 $hla = atan($hlaTAN); # needs "use Math::Trig;"
 $hla = $hla*360/(2*3.14159);

 # http://alvinalexander.com/blog/post/perl/reference-page-perl-printf-
formatting-format-cheat-sheet
 print "\nhour is: " , 12-$hr ," hour line angle is: "; # change here for h-
>v Dial
 printf("%.2f", -$hla); # change here for h->v Dial

 $hr = $hr - 1; # change here for h->v Dial
}

print "\nbye.\n";
$latitude = readline(*STDIN); # any old input to pause screen
end #

Latitude 33.5 Hour line angles for Vertical hour line

 TIME OF DAY simple dials
angles with long
corr

am pm VERTICAL am pm
12.00 12.00 0.00 5.93 -5.93
11.50 0.50 6.27 12.25 0.33
11.00 1.00 12.60 18.71 6.60
10.50 1.50 19.06 25.35 12.94
10.00 2.00 25.71 32.24 19.40

9.50 2.50 32.61 39.43 26.07
9.00 3.00 39.82 46.97 32.99
8.50 3.50 47.38 54.87 40.22
8.00 4.00 55.30 63.13 47.79
7.50 4.50 63.59 71.72 55.74
7.00 5.00 72.19 80.55 64.04
6.50 5.50 81.03 89.52 72.65
6.00 6.00 90.00 -81.50 81.50

 These have no These have

longitude
correction

longitude
correction

PERL IDE

http://open-perl-ide.sourceforge.net/

 Open_Perl_IDE_1.0.11.409.zip

http://open-perl-ide.sourceforge.net/documentation/user-manual/usermanual.html

Debugging the hDial and vDial programs was done with the standard Windows Notepad or
Wordpad programs. The files were saved and double clicked to run them. Syntax and other
abnormal termination errors were hard to debug because the DOS screen in Windows 8 flashed
up and vanished. So, an IDE would have been very helpful.

The IDE whose url is shown above installed easily. Start it with… PerlIDE.exe

It will load and then run Perl programs (or scripts if you prefer). However, the display of printing
does NOT happen until after the INPUT values are read. So, you must do:-

33.5 <enter>
7.1 <enter>
<enter>

on blind faith, and then and only then do the results get displayed. This has the advantage that
when problems occur, the “DOS window” does not flash by, instead, there is some help from the
IDE.

*** END ***

Graphics and Perl ~ two choices, GD or TK

GD with GD, the primitives are simple but there is no easy way to display the output

 http://search.cpan.org/~lds/GD-2.46/GD/Simple.pm
 http://perl.about.com/od/packagesmodules/qt/perlgdsimple.htm
 http://perl.about.com/gi/o.htm?zi=1/XJ&zTi=1&sdn=perl&cdn=compute&tm=36&gp

s=149_8_1327_699&f=00&su=p284.13.342.ip_&tt=13&bt=8&bts=8&zu=http%3A//sear
ch.cpan.org/%7Elds/GD-2.35/GD/Simple.pm

GD example code…

http://perldoc.perl.org/Math/Trig.html#TRIGONOMETRIC-FUNCTIONS
use Math::Trig; # needs "use Math::Trig;" as "atan2" is worthless
 # also TAN is in math.trig, otherwise you must
 # do sin/cos. But the big deal is TAN vs ATAN2
use GD::Simple; # needed for graphics

 # REQUIRED FOR GD GRAPHICS TO WORK: use GD::Simple;

 # create a new image
 $img = GD::Simple->new(640,640);

 # draw a red rectangle with blue borders
 $img->bgcolor('red');
 $img->fgcolor('blue');
 $img->rectangle(10,10,620,620);

 $img->moveTo(100,20);
 $img->font('Times:italic');
 $img->fontsize(18);
 $img->string('Horizontal Sundial');

 # # turtle graphics
 # $img->moveTo(320,600);
 # $img->penSize(3,3);
 # $img->angle(0);
 # $img->line(20); # 20 pixels going to the right
 # $img->turn(30); # set turning angle to 30 degrees

 $img->moveTo(320,600);
 $img->penSize(3,3);
 $x = 100;
 $y = 100;
 $img->lineTo($x,$y) ;

 # convert into png data
 # ### #
 # # This is where I am stuck right now . . . # #
 # ### #
 print $img->png;
 # write ("test.png", $img->png;);

print "\nbye.\n";
end #

TK example code

use English;

http://perldoc.perl.org/Math/Trig.html#TRIGONOMETRIC-FUNCTIONS
use Math::Trig; # needs "use Math::Trig;" as "atan2" is worthless
 # also TAN is in math.trig, otherwise you must
 # do sin/cos. But the big deal is TAN vs ATAN2

print "\n*** Illustrating Shadows PERL *** hDial Jan 5, 2014\n";

print "\nEnter a latitude as nn.n ";
$latitude = readline(*STDIN);

print "\nEnter a longitude offset (+ is west, - is east) as nn.n ";
$longitude = -readline(*STDIN);

$slat = sin($latitude*2*3.14159/360);

now start the graphics stuff
use Tkx;

$mw = Tkx::widget->new(".");
http://www.tkdocs.com/tutorial/canvas.html

$canvas = $mw->new_tk__canvas(-width => 800, -height => 600, -background =>
"yellow") ;
$canvas->g_grid(-column=>0, -row=>0);

$canvas->create_text(200,20,-text=>"HORIZONTAL SUNDIAL",-anchor=>"e");
$canvas->create_text(500,20,-text=>"www.illustratingshadows.com",-anchor=>"e");
$canvas->create_text(200,40,-text=>"LATITUDE",-anchor=>"e");
$canvas->create_text(300,45,-text=>$latitude,-anchor=>"e");
$canvas->create_text(200,60,-text=>"LONGITUDE OFFSET",-anchor=>"e");
$canvas->create_text(300,60,-text=>-$longitude,-anchor=>"e");

$hr=-5;
while ($hr<6) { # NOTE: ctrl-C will break a loop in
Windows 8

 # following does not need "use Math::Trig;" however, it is needed for ATAN etc
 # $hlaTAN = $slat ;
 # $hlaTAN = $hlaTAN * sin(15*($hr+($longitude*4/60)))*2*3.14159/360) ;
 # $hlaTAN = $hlaTAN / cos(15*($hr+($longitude*4/60)))*2*3.14159/360) ;

 $hlaTAN = $slat * Math::Trig::tan(15*($hr+($longitude*4/60))*2*3.14159/360);

 $hla = atan($hlaTAN); # needs "use Math::Trig;" as "atan2"
is worthless
 $hla = $hla*360/(2*3.14159);

 # http://alvinalexander.com/blog/post/perl/reference-page-perl-printf-
formatting-format-cheat-sheet
 print "\nhour is: " , $hr+12 ," hour line angle is: ";
 printf("%.2f", $hla);
 $thla=sprintf("%.2f", $hla);
 #
 $xc=400;
 $yc=500;
 $radial = 350;
 $y=$radial*cos($hla*2*3.14159/360);
 $x=$radial*sin($hla*2*3.14159/360);
 $canvas->create_line($xc,$yc, $xc+$x,$yc-$y);
 $canvas->create_text($xc+$x,$yc-$y,-text=>$thla);
 $canvas->create_text($xc+$x,$yc+10-$y,-text=>(12+$hr));

 $hr = $hr + 1;
}

draw gnomon
 $canvas->create_line($xc,$yc, $xc+0,$yc-200);
 $x = 200*sin($latitude*2*3.14159/360);
 $canvas->create_line($xc,$yc-200, $xc+$x,$yc-200);
 $canvas->create_line($xc,$yc, $xc+$x,$yc-200);
 $canvas->create_text($xc+$x+10,$yc-200,-text=>"LAT:",-anchor=>"e");
 $canvas->create_text($xc+$x+30,$yc-200,-text=>$latitude,-anchor=>"e");

Tkx::MainLoop();

print "\nThe End\n";

