
JAVA ~ as opposed to Java Script

STEP ONE: INSTALLING JAVA DEVELOPMENT TOOLS [NetBeans IDE 7.3]:-

To program with Java, the NetBeans IDE is a wise IDE to use. There are others.

 https://netbeans.org/downloads/index.html

Elect to choose the complete system.

At which point you are asked to accept the terms, and then you can download the system. The
following screen comes when you decide what system to use, its url for informational purposes
is:-
 http://www.oracle.com/technetwork/java/javase/downloads/jdk-netbeans-jsp-142931.html

After accepting the agreement, then
the EXE file was downloaded.

NOTE: When installing NetBeans,
the installer searches for the JDK
(Java SE development kit), if you do
not have it because you downloaded
NetBeans without the JDK, it gives
you the url in a popup window. Either
way, you would probably have files
downloaded that look something
like:-

STEP TWO: STARTING A NEW PROJECT:- hDialJavaStandAlone

In NetBeans IDE 7.3, FILE, NEW PROJECT was used to create an new application.

 FILE, NEW PROJCT

“JAVA APPLICATION: Creates a new Java SE application” in a standard IDE project. You can
also generate a main class in the project. Standard projects use an IDE-generated Ant build
script to build, run, and debug your project.

In NetBeans, the IDE (Integrated Development Environment), FILE, NEW PROJECT, and then
JAVE APPLICATION. The project name chosen was:- hDialJavaStandAlone

At this point the NetBeans has created a final folder.

In NetBeans 7.3, the folder creation process was simple. At this point, the IDE also displays the
entire project’s skeleton.

Which is nice of it, but irrelevant, because all our programming code will be event driven by
buttons in a data input panel or form.

This section continues the "PBE" philosophy, namely "Programming By Example", there is no
intent to explain the Java language, its inherent functions, nor its classes.

CONTINUING BUILDING THE PROGRAM

At any time, NetBeans can be exited, and upon re-entry the project can be re opened. When
doing so, the START PAGE is shown on the right, and you may see it there, or on the upper left it
may be there also. Either way, locate the project and open it. Once the data input panel or form
is created, that is all you need in the IDE.

In these examples, the project name used was “hDialJavaStandAlone” which suggests a
horizontal dial, in Java, and the stand alone Java as opposed to Java Script. As mentioned
before, not much is going to go anywhere without user input, in other words a form. So, in the
NetBeans, IDE, with the project open, select:-

 FILE, NEW FILE, SWING GUI FORMS, JFRAME FORM

The default name for the panel was used, the
highly original “NewJFrame”. After a short
while the frame is added to the application.
Of course, it is a good idea to come up with a
more meaningful name.

The FORM uses what is called “SWING”. So look for SWING CONTROLS on the right hand side,
and LABEL was chosen, and dragged over to the form. This would be the header to say what this
program is all about.

Some changes were made in that buttons, text input areas, and text descriptions were added.

 this tab is the main program look at main data input panel
 we will ignore this as this is the guts of our program

Design means a
pictorial or a
wysiwyg view
of the main data
input panel

Source means
the Java code
for the panel,
which is where
we will be
writing code for
button events.

DESIGN

SOURCE

The code can be seen for the above panel by clicking on “Source”, and if you select the code
area with ctrl-A to get all of it, and ctrl-C to copy it and then you paste it somewhere, you will see
there is a ton of code, the window showing it hides it unless you tell it to show you the inner stuff.
Below is the code of interest, because it is the code to be executed when one of the buttons is
clicked.

 private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {
 // G R A P H I C A L D E P I C T I O N
 }

 private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {
 // T A B U L A R D E P I C T I O N
 }

At this point FILE. SAVE ALL was done and the main folder backed up along with its sub
folders.

Then RUN, RUN FILE (which is shift F6) was used to test the form and the initial simple code.
Then the FILE, SAVE ALL, and RUN, RUN FILE repeated to ensure the program and its data
input panel were correct, so far. The results of the form and console output are shown below.

(1)
RUN, RUN FILE is here

At this point, it was time to develop the main program. The first part would be buttons to set
default latitude longitude data. Next would be the textual output and the graphical depiction of the
dial.

NOTE: the system may alter the layout of the
buttons and labels.

CODE TO ALLOW BUTTONS TO ALTER INPUT FIELDS IN THE FORM

A fourth button was added to set a default location
“set PHX”, the button on the wysiwyg form layout.
This was, as before the “OK BUTTON”.

The button was clicked slowly twice and its
description changed to “set PHX”. Another button
added for Los Angeles.

As before, that defined the button for display, it did not yet tell Java to generate a stub of code for
when the jButton was clicked. Over to the lower right the buttons were located and clicked. And
when double clicked, then a stub of code was added.

Now, code must be added to modify the fields in the data input panel. It will go into those stubs
when the “set PHX” or “set LAX” buttons are clicked.

 private void jButton4ActionPerformed(java.awt.event.ActionEvent evt) {
 // S E T D E F A U L T T O P H O E N I X
 // jTextField4 latitude
 // jTextField5 longitude
 // jTextField6 legal meridian
 jTextField4.setText("33.5");
 jTextField5.setText("112.1");
 jTextField6.setText("105");

 }

 private void jButton5ActionPerformed(java.awt.event.ActionEvent evt) {
 // S E T D E F A U L T T O L O S A N G E L E S
 jTextField4.setText("34.0");
 jTextField5.setText("118.4");
 jTextField6.setText("120");
 }

The field name “jTextField4” for example is modified with the method “setText” whose parameter
is the new data. The opposite method is “getText” which retrieves the data, and will be used in
the final output code.

 http://www.beginner-java-tutorial.com/j-intswing-a4.pdf

is a tutorial on the getText and setText methods.

THE CODE FOR THE TABULAR AND GRAPHICAL PROCEDURES

FIRST – required code because of the need for an import for graphical support

/*
 * To change this template, choose Tools | Templates
 * and open the template in the editor.
 */

/* **
 ** BELOW WAS ADDED BY ILLUSTRATING SHADOWS AS REQUIRED **
 **
*/
import java.awt.Graphics;
import java.awt.Color;
/* **
*/

SECOND – code for the graphical display

 /*
 * This must be added to start of source file so our graphics
 * program functions or command will be recognised.
 *
 import java.awt.Graphics;
 */
 private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {
 // G R A P H I C A L D E P I C T I O N
 /* *** *
 * * this is GRAPHICAL DEPICTION button handler * *
 * ** *
 */

 // create a box area for graphics: graph coordinates are integer
 int leftx, rightx, ctrx, topy, boty, ctry;
 leftx = 001;
 rightx = 799;
 ctrx = leftx+(rightx-leftx)/2;
 topy = 300;
 boty = 800;
 ctry = topy + (boty-topy)/2;

 Graphics swsxxy = getGraphics(); // establish a graph area
 setSize (rightx+1,boty+1); // of such and such a size
 // some of these functions are defined at:-
 // docs.oracle.com/javase/1.5.0/docs/api/java/awt/Graphics.html

 swsxxy.setColor(Color.blue) ; // border color
 swsxxy.clearRect(leftx,topy,rightx-leftx,boty-topy);
 // drawRect(); // swsxxy.fillRect();

 // keep the buttons showing in case they were in the graph area
 jButton1.setVisible(true); jButton2.setVisible(true);

 // set dial center and draw an alignment line
 int dcx, dcy, r;
 dcx = ctrx; // dial center x
 dcy = boty-150; // dial center y
 r = 150; // size of an hour line
 swsxxy.drawLine(dcx,dcy-50,dcx,dcy-r);
 swsxxy.drawLine(dcx-50,dcy,dcx-r, dcy);
 swsxxy.drawLine(dcx+50,dcy,dcx+r, dcy);
 swsxxy.drawString("*", dcx,dcy);
 r = 325; // size of an hour line

 // start the graphical depiction
 double hr, ha, hla, hlat, myLat, myLng, myRef;
 double x,y;
 myLat = Float.parseFloat(jTextField4.getText());

 myLng = Float.parseFloat(jTextField5.getText());
 myRef = Float.parseFloat(jTextField6.getText());
 swsxxy.setColor(Color.black) ; // border color
 for (hr = 6; hr<20; hr=hr+1) {
 // hlaD = hlaH (hr, myLat, myLng, myRef)
 ha = hr*15 - (myLng-myRef) ;
 hlat = Math.sin(myLat*2*3.1416/360) *
 Math.tan(ha*2*3.1416/360);
 hla = 360*(Math.atan(hlat))/(2*3.146);
 x=r*Math.sin(2*3.1416*hla/360);
 y=r*Math.cos(2*3.1416*hla/360);
 /* late afternoon code to stop it showing up as morning */
 if (hr > 12) {
 if (hla < 0) {
 x = -x; y = -y;
 }
 }
 /* early morning code to stop it showing up as afternoon*/
 if (hr < 12) {
 if (hla > 0) {
 x = -x; y = -y;
 }
 }
 swsxxy.drawLine((int)dcx,(int)dcy,(int)dcx+(int)x, (int)dcy-(int)y);
 String h = ""+hr;
 swsxxy.drawString(h, (int)dcx+(int)x, (int)dcy-(int)y);
 String a0, a1 ;
 a0 = String.format("%f", hla);
 a1 = a0.substring(0,5);
 swsxxy.drawString(a1, (int)dcx+(int)x, (int)dcy+20-(int)y);
 }

 leftx = leftx+15; rightx = rightx-15;
 topy = topy-15; boty = boty-15;
 swsxxy.drawLine((int)rightx,(int)topy,(int)rightx, (int)boty);
 swsxxy.drawLine((int)leftx, (int)topy,(int)leftx, (int)boty);
 swsxxy.drawLine((int)leftx, (int)topy,(int)rightx, (int)topy);
 swsxxy.drawLine((int)leftx, (int)boty,(int)rightx, (int)boty);

 }

THIRD – code for the tabular display

 private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {
 /* *** *
 * * this is the TABULAR DEPICTION button handler * *
 * ** *
 */

 // create a box area for graphics
 int leftx, rightx, ctrx, topy, boty, ctry;
 leftx = 001;
 rightx = 799;
 ctrx = leftx+(rightx-leftx)/2;
 topy = 300;
 boty = 800;
 ctry = topy + (boty-topy)/2;
 Graphics swsxxy = getGraphics(); // THIS LINE IS CRITICAL
 setSize (rightx+1,boty+1); // same as preceding { ... }
 // some of these functions are defined at:-
 // docs.oracle.com/javase/1.5.0/docs/api/java/awt/Graphics.html
 swsxxy.setColor(Color.blue) ; // border color
 swsxxy.clearRect(leftx,topy,rightx-leftx,boty-topy);
 // drawRect(); // swsxxy.fillRect();

 // keep the buttons showing in case they were in the graph area
 jButton1.setVisible(true); jButton2.setVisible(true);

 // set dial center and draw an alignment line
 int dcx, dcy, r;

 dcx = ctrx; // dial center x
 dcy = boty-150; // dial center y
 r = 150; // size of an hour line
 r = 350; // size of an hour line

 // start the textual depiction
 double hr, ha, hla, hlat, myLat, myLng, myRef;
 double x,y;
 myLat = Float.parseFloat(jTextField4.getText());
 myLng = Float.parseFloat(jTextField5.getText());
 myRef = Float.parseFloat(jTextField6.getText());
 swsxxy.setColor(Color.black) ; // border color
 int nextLine = topy;
 nextLine = nextLine+20;
 swsxxy.drawString("HOUR", 100,(int)nextLine);
 swsxxy.drawString("HOUR LINE ANGLE", 200,(int)nextLine);
 nextLine = nextLine+15;
 for (hr = 6; hr<20; hr=hr+1) {
 // hlaD = hlaH (hr, myLat, myLng, myRef)
 ha = hr*15 - (myLng-myRef) ;
 hlat = Math.sin(myLat*2*3.1416/360) *
 Math.tan(ha*2*3.1416/360);
 hla = 360*(Math.atan(hlat))/(2*3.146);

 String h = ""+hr;
 swsxxy.drawString(h, 100, (int)nextLine);
 String a0, a1 ;
 a0 = ""+String.format("%f", hla);
 a1 = a0.substring(0,5);
 swsxxy.drawString(a1, 200,(int)nextLine);
 nextLine = nextLine+20;
 }
 leftx = leftx+15; rightx = rightx-15;
 topy = topy-15; boty = boty-15;
 swsxxy.drawLine((int)rightx,(int)topy,(int)rightx, (int)boty);
 swsxxy.drawLine((int)leftx, (int)topy,(int)leftx, (int)boty);
 swsxxy.drawLine((int)leftx, (int)topy,(int)rightx, (int)topy);
 swsxxy.drawLine((int)leftx, (int)boty,(int)rightx, (int)boty);

 }

The final form and graphical and tabular output

PROBLEM: IF YOU DO NOT SEE YOUR FORM WHEN STARTING NETBEANS

The top left panel in NetBeans allows sub folders to be clicked and their files to be opened. In this
manner the (a) main form, (b) the main code, and (c) the event driven code for the buttons will
once again appear.

When the PROJECT is opened
the data input panel is not always
automatically shown. To bring it
into view, try the following:-

 data input panel
 may be in
 DEFAULT PACKAGE

 or may be in
 another folder

PROBLEM: IF RUN, RUN FILE DOES NOT WORK:-

Change something in the source, and repeat.

PROBLEM: EXECUTING A “.JAVA” FILE IN WINDOWS 8. While the “.java” file type can be
associated with “java.exe” in the program associations, and while Java will be invoked when
double clicking a “.java” file, Java itself fails as it cannot find some of the things it needs, such as
the “.class” files. NetBeans says that doing a “RUN, CLEAN AND BUILD” will create a JAR file,
and Windows 8 has “.jar” associated with Java, but nothing happens. In reality, Java itself is not a
priority in Windows 8 so at best, Windows 8 can develop and test within NetBeans. But running
Java programs in Windows 8 may become a thing of the past.

PROBLEM: User functions for common programming

Functions are not a part of Java, use a class and methods instead. In other words you are forced
into object oriented programming.

THE FOLLOWING ARE USEFUL NOTES FROM THE EARLIER VERSION OF JAVA NOTES

There are several books that are helpful, one is "JAVA In Easy Steps" by Mike McGrath, and is
based on a text based non graphical development environment such as JPadPro. Another
includes an SDK on a CD and is "Programming With JAVA in 24 Hours" by Rogers Cadenhead
that gets into graphical IDEs such as NetBeans. A third is "Core JAVA 2 – Volume 1 –
Fundamentals" by Cay Horstmann and Gary Cornell which has useful internal theory.

TEXT STRINGS AND STRICT TYPING: Code would be added to extract the TEXT STRINGS of
longitude and legal meridian, convert them to FLOAT, perform the math, and convert them back
to STRING. This sounds simple however the JAVA IDE "help" system is not overburdened with
practical examples. A search on the web did locate the "float to string" function using HELP,
SUPPORT AND DOCS ONLINE, then selecting "The JAVA Tutorial" and following links until the
helpful url was found:-

 http://java.sun.com/docs/books/tutorial/java/data/strings.html

This showed the "String.format" function. Finding useful functions complicates learning JAVA
since what are normally language functions may now be an object's methods.

 // derive the dial location and hour correction
 s1 = jTextField2.getText();
 s2 = jTextField3.getText();
 t1 = Float.parseFloat(s1);
 t2 = Float.parseFloat(s2);
 t3 = 4*(t1-t2)/60 ;
 // show hour correction
 s3 = String.format("%f", t3);
 jLabel6.setText (s3);

MATHEMATICAL FUNCTIONS

At this point the math functions are needed, and the online help was used using HELP,
SUPPORT AND DOCS ONLINE, then selecting "The JAVA Tutorial" and following links until the
helpful url was found:-

 http://java.sun.com/javase/6/docs/api/java/lang/Math.html

BENEFITS OF TRUE OBJECT ORIENTED CLASSES WITH METHODS

Not shown in the program that follows is the repainting of a java window when it is covered up by
some other window. A true benefit of a fully implemented object oriented system is that methods
belonging to classes can be interlinked or inter-related, and invoked "when things happen". One
such method may be invoked to redraw a java window when that window has been affected by
some other window.

