
C#

C SHARP is Microsoft’s development of C++, and incorporates object oriented methods more so
than does C++. It also incorporates more consistent packaging of what would be extra downloads
in other systems. It is complete with an IDE, and the IDE does much of the syntax checking. For
documentation, what works well is an internet search on “C# FUNCTIONS TEXT FLOAT TO
INTEGER” or some such question. Usually the first few choices will provide the answer. The
Visual Express packages were language specific whereas the Visual Studio packages which
replaced them are computer specific while covering several languages all in the one package.

C# Overview
 http://en.wikipedia.org/wiki/C_Sharp_(programming_language)#Implementations

A free IDE ~ not needed as the Visual Studio package has an excellent IDE
 http://en.wikipedia.org/wiki/SharpDevelop

Microsoft resources: http://msdn.microsoft.com/en-us/vstudio/hh341490.aspx

 then you must register. This involved an email address and a password that you select.

Then it sends a verification email with a link you click on to confirm. Do not be surprised if
the link takes you to a page-not-found. I had to try several times.

 For Windows 8 use the following, the other choice demands Windows 8.1 and it means it.

The Microsoft system works first time, and it does generate an exe file and that runs also. This is
an improvement over the early editions of the Visual Express applications.

The system is downloaded and installed,, it wants your email and the password you chose for
Visual Studio, expect to enter it several times. By the way, while the IDE is excellent at identifying
source code problems, it is not overburdened with help, so, check the NOTE: sections of this
article.

then

After download and installation, a
computer restart is required. Then
locate the system in the ALL
PROGRAMS list as VISUAL STUDIO
2013 and then VS EXPRESS 2013
FOR DESKTOP, and right click and
create a desk top entry. Once done,
click on the shortcut on the desktop
when it will want you to sign in, use
the same userid and password as
before.

At which point you may get started.

NOTE: A quick note, file names this system generates can be long. Where you can, make them
meaningful and short. This is because when you copy them, the complete path and file name
character count may exceed the file systems limits. This is a file and folder name issue, nothing to
do with the size of the actual files themselves.

The simplest form of C# programming is the Console Application. Do FILE, NEW
PROJECT, then select CONSOLE APPLICATION. You write your programand to test it:-

 BUILD is used to compile and like: BUILD SOLUTION
 DEBUG is used to execute it: DEBUG START DEBUGGING

// console application only ~ our copy we will call hDial.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace ConsoleApplication2
{
 class Program
 {
 static void Main(string[] args)
 { int i, ii;
 double lat, sinlat, lng, hla, hlat;
 float j, corh;
 string line;

 float fData = 12.345f; // no reason for this here at all, merely
 int iData = (int)fData; // a type conversion

 System.Console.WriteLine("*** Illustrating Shadows ~ hDial.cs in c# ***");
 System.Console.WriteLine("Enter a latitude: ");
 line = System.Console.ReadLine();
 lat = Convert.ToDouble(line);

 System.Console.WriteLine("Enter a longitude offset (+W -E): ");
 line = System.Console.ReadLine();
 lng = Convert.ToDouble(line);
 corh = (float)(lng * 4 / 60);

 for (i = -6; i < 7; i++) {

 if (i == 0) { System.Console.WriteLine(" "); };
 if (i == 1) { System.Console.WriteLine(" "); };

 sinlat = Math.Sin(lat * 2 * 3.1416 / 360);

 // get the hour angle of the sun
 ii = (-1) * i;
 j = 15 * (ii + corh);

 /* get the resulting hour line angle ~ atan(sin(lat)*tan(hr*15) */
 hlat = sinlat * Math.Tan(j * 2 * 3.1416 / 360);

 /* get the hour line angle back to degrees */
 hla = 360 * (Math.Atan(hlat)) / (2*3.1416);

 System.Console.WriteLine("Hour: " + i + "hour line angle: " +
 Math.Round(hla, 2, MidpointRounding.ToEven));
 }
 line = System.Console.ReadLine();
 System.Console.WriteLine("END");
 }
 }
}

THE SIMPLEST KIND OF APPLICATION ~ CONSOLE APPLICATION TYPE ~ hDial

Once saved, you may locate your project is in:--

And your copy is only saved in your specified folders if you do a PUBLISH. PUBLISH is used for
sending a final copy somewhere somehow. NOTE: You can cave the above folders wherever you
wiah and restore them back in the event you screw things up badly. I do that.

If you wish to change your application’s programming, do:-

 FILE, OPEN PROJECT,

Then click on the desired project folder, and then select the .SLN file (SLN means
Microsoft Visual Studio Solution)

 NOTE: And if no source code comes up, then locate it as the .CS file

 click the Program.cs and
 it will open up for you to
 mess with it. Program.cs
 is the main program.
 When using forms, then
 Program.cs invokes your
 program: Form1.cs etc

The above general principles work for the next two levels of C# programming. Those next two
levels use forms. And sometimes when loading the project for changes, the graphical depiction of
the form does not appear, only the coded version. The next section for Windows Form Application
discusses those issues.

So, the next step is Windows Form Application, which is GUI based, but text only, which
we will cover next, armed with the above helpful ideas.

 http://msdn.microsoft.com/en-us/library/360kwx3z(v=vs.90).aspx

And the next step after that will be WPF, Windows Presentation Foundation (WPF)
application which allows graphics.

 http://msdn.microsoft.com/en-us/library/bb655895(v=vs.90).aspx

 TOOLBOX where
 you can drag things
 from and drop them
 into the form

When you do a FILE and then NEW PROJECT, then Windows Form Application, a form will pop
up. The process is similar to the Visual Basic process, and the Lazarus GUI process, so only key
issues will be discussed here. As with VB and Lazarus, buttons trigger events and they in turn
invoke user code. When a BUTTON is double clicked when in the form, a stub of code is
generated to handle the event; this is where the guts of the program lie.

The final form for this
application

The key labels are “lat”, “lng”, “hour” for input, with “hla” for output.

Windows Form Application, which is GUI based, but text only.

The following is the C# program using just forms.

using System; // This is Form1.cs, which is invoked by
using System.Collections.Generic; // Program.cs (see above inset)
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;

namespace WindowsFormsApplication1
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void calc_Click(object sender, EventArgs e)
 {
 // get lat and lng and calculate hla
 double dHLA = 100.000;
 string sHLA = "123.45";
 this.BackColor = Color.Yellow;

 double dLAT, dLNG, dHOUR;
 // string sLAT, sLNG, sHOUR;

 dLAT = Convert.ToDouble(lat.Text); // Get the data
 dLNG = Convert.ToDouble(lng.Text);
 dHOUR = Convert.ToDouble(hour.Text);
 dHOUR = dHOUR - (4 * dLNG / 60);

 dHLA = Math.Atan(Math.Sin(dLAT *2*3.1416/360) *
 Math.Tan(15*dHOUR*2*3.1416/360)) ;
 dHLA = 360 * dHLA / (2*3.1416);
 dHLA = Math.Round(dHLA, 3, MidpointRounding.ToEven);
 sHLA = Convert.ToString(dHLA);

 hla.Text = sHLA; // Put the data
 }

 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using System.Windows.Forms;
namespace WindowsFormsApplication1
{ static class Program
 { /// The main entry point for the application.
 [STAThread]
 static void Main()
 { Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);
 Application.Run(new Form1());
 }
 }
}

 Form1.cs

This is the simplest form of C# programming for a TEXT FORM.

BUILD is used to compile and like: BUILD SOLUTION
DEBUG is used to execute it: DEBUG START DEBUGGING

And the result it:-

Horizontal hour
line

 TIME OF DAY
angles with long
corr

am pm am pm

12.00 12.00 3.93 -3.93
11.50 0.50 8.18 0.22
11.00 1.00 12.63 4.38
10.50 1.50 17.41 8.64
10.00 2.00 22.66 13.12

9.50 2.50 28.56 17.94
9.00 3.00 35.34 23.25
8.50 3.50 43.25 29.24
8.00 4.00 52.57 36.12
7.50 4.50 63.48 44.17
7.00 5.00 75.89 53.66
6.50 5.50 89.28 64.74
6.00 6.00 -77.28 77.28

 These have

longitude
correction

For latitude 33.5 and
longitude 112.1 from legal
meridian of 105, we have
the +7.1 longitude
correction. Then, at 3pm
we get an HLA of 23.25
degrees, which matches
the Excel spreadsheet.

The general principles for console applications work for this (Windows Form Application) and the
next level, Windows Presentation Foundation (WPF) of C# programming. These two levels use
forms.

NOTE: Sometimes when loading the project for changes, the graphical depiction of the form does
not appear, only the coded version. So, how does one get the graphical depiction to re-appear?

Locate the Form1.cs and click it even if
the IDE shows Form1.cs as being there
in the IDE. This will get Form1.cs
[Design]

Whereas Program.cs was the main
program in the console application,
things are now different.

Form1.cs is actually the user program
now, and with it should come up the
form layout. With forms, the Program.cs
is the code stub that invokes the Form
code which is the main guts of the program.

NOTE: If that does not work, try VIEW on the top menu bar and then VIEW DESIGNER.

NOTE: Sometimes the forms design comes up but not its associated program. In that case use
FILE, OPEN, and open the Form1.cs file.

The most advanced application for the PC is however the WPF. There are a couple of graphical
systems provided with WPF, one is “stackpanel”, the other is “canvas”. Not being over supplied
with documentation, I tried “stackpanel” first, it did what it implied, it stacked graphical objects one
below the other. So then I tried “canvas” which I have used before with “Java Script”. That worked
well.

As before, a form was designed, and that will be also where the graphics is displayed, obliterating
the buttons and so on.

The main program is called by default “MainWindow.xaml.cs”

The code was fairly straight forward, and since this is part of the PBE (programming by example)
system, there are labels holding data, hour lines, and circles as well all displayed.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

namespace hDialWPF

Windows Presentation Foundation (WPF) application

a FILE, NEW PROJECT, WPF
Application generated by the IDE when
you do

{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();
 }

 private void drawDial_Click(object sender, RoutedEventArgs e)
 {
 // this is where we come when DRAW is clicked
 // in Windows Form Application we used: this.BackColor = Color.Yellow;
 // In WPF (Windows Presentation Foundation) we use:
 this.Background = Brushes.Yellow;
 // http://stackoverflow.com/questions/979876/set-background-color-of-wpf-textbox-in-c-sharp-code

 // get lat and lng and calculate hla
 double dHLA, corrM;
 string lLat = "23.456";

 double dLAT, dLNG, dHOUR, sLat;
 // string sLAT, sLNG, sHOUR;

 dLAT = Convert.ToDouble(this.lat.Text); // Get the data
 dLNG = Convert.ToDouble(this.lng.Text);
 sLat = Math.Sin(dLAT * 2 * 3.1416 / 360);

 corrM = 4 * Convert.ToDouble(this.lng.Text);
 corrM = Math.Round(corrM, 2, MidpointRounding.ToEven);
 // the following works but is not displayed as the graph trashes the window
 this.corr.Content = Convert.ToString(corrM);
 this.corrNote.Content = "Minutes";

 double radius = 300.0;

 // do not use "stackpanel" as it does what it says, stacks graphical images
 // do use "canvas" http://www.c-sharpcorner.com/uploadfile/mahesh/canvas-in-wpf/
 Canvas myCan = new Canvas();

 for (int hr = -5; hr <= 5; hr++)
 {
 dHOUR = hr - (corrM / 60);
 dHLA = Math.Atan(sLat * Math.Tan(15 * dHOUR * 2 * 3.1416 / 360));
 dHLA = 360 * dHLA / (2 * 3.1416); // dHLA is now in degrees
 dHLA = Math.Round(dHLA, 3, MidpointRounding.ToEven);

 if (hr == 0)
 { // at noon state the noon hour line angle
 // the following works but is not displayed as graph trashes it
 this.noonName.Content = "Noon hla:";
 this.noonHla.Content = Convert.ToString(dHLA);
 }

 // http://msdn.microsoft.com/en-us/library/ms747393(v=vs.110).aspx
 // hla.Text = sHLA; // Put the data

 // Add a Line Element
 // NOTE: the web page's example differs on this line
 Line myLine = new Line();
 Label myHr = new Label();
 Label myHla = new Label();
 myLine.Stroke = System.Windows.Media.Brushes.Blue;
 myLine.X1 = 400; // dial center
 myLine.Y1 = 400;

 // NOTE: X2 is a displacement from X1, and ditto Y2
 myLine.X2 = myLine.X1+(int)(radius * Math.Sin(dHLA * 2 * 3.1416 / 360));
 myLine.Y2 = myLine.Y1-(int)(radius * Math.Cos(dHLA * 2 * 3.1416 / 360));
 myLine.StrokeThickness = 1;

also IDE
generated

 myHr.Content = Convert.ToString(hr+12);
 Canvas.SetLeft(myHr, myLine.X2-10);
 Canvas.SetTop (myHr, myLine.Y2-25);

 myHla.Content = Convert.ToString(Math.Round(dHLA,
 2, MidpointRounding.ToEven));
 Canvas.SetLeft(myHla, myLine.X2 - 10);
 Canvas.SetTop (myHla, myLine.Y2 - 45);

 Ellipse dot = new Ellipse();
 dot.Height = 5; dot.Width = 5; dot.StrokeThickness = 1;
 dot.Stroke = System.Windows.Media.Brushes.Blue;
 Canvas.SetLeft(dot, myLine.X2);
 Canvas.SetTop (dot, myLine.Y2);

 myCan.Children.Add(myLine);
 myCan.Children.Add(myHr);
 myCan.Children.Add(myHla);
 myCan.Children.Add(dot);
 }

 Label details = new Label();
 Canvas.SetLeft(details, 120);
 Canvas.SetTop (details, 450);
 details.Content = this.lat.Text;
 myCan.Children.Add(details);

 Label offset = new Label();
 Canvas.SetLeft(offset, 220);
 Canvas.SetTop(offset, 450);
 offset.Content = this.lng.Text;
 myCan.Children.Add(offset);

 Label who = new Label();
 Canvas.SetLeft(who, 320);
 Canvas.SetTop(who, 450);
 who.Content = "horizontal dial: www.illustratingshadows.com Feb 7, 2014";
 myCan.Children.Add(who);

 this.Content = myCan;
 }
 }
}

And finally, the online tutorial:-

http://msdn.microsoft.com/library/vstudio/dd492171(v=vs.120)

