
www.illustratingshadows.com 

Feb 10, 2014 ~ this may be distributed freely provided the web site credit  
and this notice are retained 

1

PROGRAMMING IN VISUAL BASIC (Envelop) (obsolete, but good concepts herein) 
 
A free version of Visual Basic was available from:- 
 
 http://www.freebyte.com/programming/compilers/envelop.html 
 
this is an excellent albeit unsupported product, downloaded as an INSTALL file and six parts, 
totaling just over 7mb. Once downloaded, each zip fie is expanded into a single common folder, 
and the SETUP program run. Designed for Windows 95 or later, this runs on Windows XP service 
packs 1 and 2, Saving project source files is explained in HELP. The FILE/SAVE PROJECT is 
used to save a program suite. More importantly, to restore them, the OBJECTS form for the 
application must be clicked, as well as its subsequent FORM and APPLICATION entries. 
 
Visual Basic is object oriented, thus the "screen" or form is designed first, fixed data entered next, 
and finally the code (methods) is entered for each button (object). When a button (object) is 
clicked, then its program (method) is invoked. It is thus event driven. The following example is 
more event driven than truly object oriented although the distinction is somewhat arbitrary. 
 
The actual computer desktop area looks something like the below. 

 
 
The Microsoft Visual Basic link is:  
 
 http://msdn2.microsoft.com/en-us/vbasic/default.aspx 
 
Microsoft's Visual Basic 2005 Studio Express for Windows XP service pack 2 is about 60mb after 
an initial 3mb download and is downloadable for free from their website: 
 
 http://msdn.microsoft.com/vstudio/express/downloads/default.aspx 



www.illustratingshadows.com 

Feb 10, 2014 ~ this may be distributed freely provided the web site credit  
and this notice are retained 

2

First, a form was established with some "labels" which hold resultant data, some "text boxes" to 
hold user variable data, and a couple of clickable buttons. This was done by selecting the 
appropriate tool from the "controls" menu and placing those tools on the form. 
 
The program was developed in a matter of minutes, and some small clarifying changes made as 
work proceeded. However, the following screens are very close to the product that was designed 
and which is on the CD associated with Illustrating Shadows. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
As you develop the "form", some logical sequence of adding objects will simplify their names, 
names which will be used in methods. If you enter data into the caption field, the form has that 
caption displayed and not the name of the object itself, and it is the name that is needed in the 
methods (programming associated with that object).  
 
However, if you forget an object's name, then while building a method, one can click on an object 
in the form and then identify its label. Then one goes back to the method editor and continues. 
 
 

NOTE: an object has a name (used 
in a method), a caption (seen on the 
form), and text (data within the 
object).  



www.illustratingshadows.com 

Feb 10, 2014 ~ this may be distributed freely provided the web site credit  
and this notice are retained 

3

 
 
 
At this point, a form 
has been generated. 
In this design phase, 
some data may be 
entered by the 
designer, and the rest 
entered or calculated, 
by the "click" "move" 
action of a button. 
 
First, "Label1.Text" 
was changed to 
"Horizontal Dial 
Calculator". 
 
The caption can be 
changed instead, and 
that changes the text.  
 

 
 
 
Then, other fixed fields were tailored in the same way. When this is done, the labels "Label1" etc 
are deleted, and replaced by the entered text. Since some of those labels will be used in formulae 
references, such as the left column of "hrs fm noon", it is important to document the label names. 
Should this not be done, then the label can still be found by clicking the object in the form display. 
 

 
 
 
 
 
 
 
 
 
At this point, fixed data is entered, what is 
needed now is the actions to be taken when 
a button is clicked. The button is an 
"object", and when clicked, it invokes a 
"method". 
 
In this case, the objects had a "move" and 
"click" associated with them. 
 
NOTE: Should you go back and re-edit the 
form, you may find that some of the text in 
the label fields may be missing. This can be 
mitigated by having the "initialize" button set 
field and label text defaults. 

NOTE: the object's labels 
disappear  when data is entered, 
however clicking any object will 
reveal its name. 



www.illustratingshadows.com 

Feb 10, 2014 ~ this may be distributed freely provided the web site credit  
and this notice are retained 

4

 
First, Button1 was programmed. The Button1 was selected and this then made active the method 
editor.  

 
        select CLICK in this box... 
 ...which clears the two right hand boxes    
 and generates some skeleton code. 
 

 
The following code is typed in to the skeleton code. This code ensures default text in Label fields 
in case the Envelop compiler loses the default data. 
 

Sub Initialize_Click() 
  Label1.Text = "Horizontal Dial Now Ready" 
  TextBox2.Text = "32.75" 
  TextBox3.Text = "108.2" 
  TextBox4.Text = "105" 
  TextBox1.Text = (TextBox3.Text - TextBox4.Text) * 4 / 60 
  Label8.Text = 0 
  Label15.Text = 1 
  Label19.Text = 2 
  Label23.Text = 3 
  Label27.Text = 4 
  Label31.Text = 5 
  Label35.Text = 6 
  Label5.Text = "hrs of noon" 
  Label6.Text = "morning" 
  Label7.Text = "afternoon" 
  Label2.Text = "Design latitude" 
  Label3.Text = "Design longitude" 
  Label4.Text = "Legal time meridian's longitude" 
End Sub 

 
and the check box causes this code to be saved. 

 
Then, click the button on the main editor to go from edit to run mode. 
 

 
This tests the button's event driven method. In other words, it runs the code. 



www.illustratingshadows.com 

Feb 10, 2014 ~ this may be distributed freely provided the web site credit  
and this notice are retained 

5

The result was that the header title was changed, and 
some default values generated. 
 
 
 
 
 
 
 
 
 
 
While at it, the word "Button1" was changed to the 
word "Initialize" so that this button would be more 
meaningful. Visual Basic is case sensitive, so when 
writing the event driven code, "TextBox" is not the 
same as "textbox" nor "Textbox". 
 
At this point, the fixed data has been built into the 
objects in the form, now the "Calculate" code must be 
built. This will use Button2, so that was renamed to Calculate. The object's CAPTION appears on 
the form, the object's NAME is what is used in program references. These are massaged by first 
clicking the object on the form, which in turn located that object in the PROPERTIES panel, and 
from there things can be changed. The final step is to click on the "Calculate" button so that the 
Methods Editor is highlighted, and the code for the hour lines then coded. The Method Editor 
"move" and "click" is used to identify the correct code for a button click for this object. 
 
Sub Calculate_Click() 
 
  TextBox1.Text = (TextBox3.Text - TextBox4.Text) * 4 / 60 
 
  Label10.Text = (360 / (2 * 3.1416)) * atn(sin(TextBox2.Text * ((2 * 3.1416) / 360)) * 
tan(((2 * 3.1416) / 360) * 15 * (Label8.Text + TextBox1.Text))) 
  Label11.Text = -Label10.Text 
  Label13.Text = (360 / (2 * 3.1416)) * atn(sin(TextBox2.Text * ((2 * 3.1416) / 360)) * 
tan(((2 * 3.1416) / 360) * 15 * (Label15.Text + TextBox1.Text))) 
  Label12.Text = (360 / (2 * 3.1416)) * atn(sin(TextBox2.Text * ((2 * 3.1416) / 360)) * 
tan(((2 * 3.1416) / 360) * 15 * (Label15.Text - TextBox1.Text))) 
  Label17.Text = (360 / (2 * 3.1416)) * atn(sin(TextBox2.Text * ((2 * 3.1416) / 360)) * 
tan(((2 * 3.1416) / 360) * 15 * (Label19.Text + TextBox1.Text))) 
  Label16.Text = (360 / (2 * 3.1416)) * atn(sin(TextBox2.Text * ((2 * 3.1416) / 360)) * 
tan(((2 * 3.1416) / 360) * 15 * (Label19.Text - TextBox1.Text))) 
  Label21.Text = (360 / (2 * 3.1416)) * atn(sin(TextBox2.Text * ((2 * 3.1416) / 360)) * 
tan(((2 * 3.1416) / 360) * 15 * (Label23.Text + TextBox1.Text))) 
  Label20.Text = (360 / (2 * 3.1416)) * atn(sin(TextBox2.Text * ((2 * 3.1416) / 360)) * 
tan(((2 * 3.1416) / 360) * 15 * (Label23.Text - TextBox1.Text))) 
  Label25.Text = (360 / (2 * 3.1416)) * atn(sin(TextBox2.Text * ((2 * 3.1416) / 360)) * 
tan(((2 * 3.1416) / 360) * 15 * (Label27.Text + TextBox1.Text))) 
  Label24.Text = (360 / (2 * 3.1416)) * atn(sin(TextBox2.Text * ((2 * 3.1416) / 360)) * 
tan(((2 * 3.1416) / 360) * 15 * (Label27.Text - TextBox1.Text))) 
  Label29.Text = (360 / (2 * 3.1416)) * atn(sin(TextBox2.Text * ((2 * 3.1416) / 360)) * 
tan(((2 * 3.1416) / 360) * 15 * (Label31.Text + TextBox1.Text))) 
  Label28.Text = (360 / (2 * 3.1416)) * atn(sin(TextBox2.Text * ((2 * 3.1416) / 360)) * 
tan(((2 * 3.1416) / 360) * 15 * (Label31.Text - TextBox1.Text))) 
  Label33.Text = (360 / (2 * 3.1416)) * atn(sin(TextBox2.Text * ((2 * 3.1416) / 360)) * 
tan(((2 * 3.1416) / 360) * 15 * (Label35.Text + TextBox1.Text))) 
  Label32.Text = (360 / (2 * 3.1416)) * atn(sin(TextBox2.Text * ((2 * 3.1416) / 360)) * 
tan(((2 * 3.1416) / 360) * 15 * (Label35.Text - TextBox1.Text))) 
  Label5.Text = "hrs of noon" 
  Label6.Text = "morning" 
  Label7.Text = "afternoon" 
  Label2.Text = "Design latitude" 
  Label3.Text = "Design longitude" 
  Label4.Text = "Legal time meridian's longitude" 
End Sub 

The resulting field is 
a TextBox as 
opposed to a more 
appropriate Label 
object. This was only 
to make object 
numbering easier.  



www.illustratingshadows.com 

Feb 10, 2014 ~ this may be distributed freely provided the web site credit  
and this notice are retained 

6

The code is inserted in the method editor, and the system 
switched from edit to execute mode and thus tested. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
The developed system can be saved.  Saving project source files are not well explained in HELP. 
The FILE/SAVE PROJECT as well as the prompted FILE/SAVE MODULE are used to save a 
program. More importantly, to restore them, the OBJECTS "form" for the application must be 
clicked, as well as its subsequent FORM and APPLICATION entries. 
 
 
 
The end result is three files. 
 
 .ebj The project file, small, a sort of coordinating file. 
 .ebo The objects file mostly, relates to the form and application. 
 .exe The executable program. 
 
While the .exe file can be executed as is, it uses .dll files that only exist if Envelop's Visual Basic 
are installed. So, exporting these Visual Basic programs means the end user also installing 
Envelop. An alternative is to click on START, PROGRAMS, ENVELOP, and select the Application 
Install Wizard. This should generate a fully executable program. 
 

 
 
 
 
 

 
 
  
 
 
However, even this may not install all of the required .dll files.  
 
Never the less, the Envelop Visual Basic system is a good package, easy to use, and complete 
with an extensive help system to facilitate a programmer new to object oriented techniques, and 
in an IDE (integrated development environment). 
 
The Envelop implementation of Visual Basic runs on Windows XP both service pack's 1 and 2. 
 
As will be seen, the Visual Basic IDEs are a good introduction to the JAVA NetBeans IDE. 

The end 
result 

... 
Application Install Wizard 
... 
... 
 



www.illustratingshadows.com 

Feb 10, 2014 ~ this may be distributed freely provided the web site credit  
and this notice are retained 

7

PROGRAMMING IN VISUAL BASIC EXPRESS (Microsoft) 
 
Visual Basic Express is downloaded, 
first as a 3mb installer, then as 60mb 
of code, if the installer likes your 
system. And XP SP1 is not liked. 
 
This is from Microsoft, and the 
registration process is cumbersome. 
 
While the tool bars can get in the way 
of your work, the process is similar to 
the Envelop Visual Basic system. 
 
The coding for the button clicks is 
similar but notice that a function's 
library name is used in the function 
calls, e.g.:- System.Math.Tan  
where "System.Math." is the library 
holding the "Tan" function. 
 
The url for the Visual Basic Express, and other light weight Express products is:- 
 
 http://msdn.microsoft.com/vstudio/express/downloads/default.aspx 
 
And Microsoft's main Visual Basic web page is:-  
 
 http://msdn2.microsoft.com/en-us/vbasic/default.aspx 
 
Here is some Visual Basic Express code for the horizontal dial. 
 
Public Class Form1 
 
    Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) 
Handles Button1.Click 
        Label1.Text = "horizontal dial ready" 
        TextBox1.Text = 32.73 
        TextBox2.Text = 108.2 
        TextBox3.Text = 105.0 
        Label6.Text = 4 * (TextBox2.Text - TextBox3.Text) / 60 
        Button2.Text = "Calculate" 
    End Sub 
 
    Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) 
Handles Button2.Click 
        Label1.Text = "horizontal dial data ready" 
        Label6.Text = 4 * (TextBox2.Text - TextBox3.Text) / 60 
        Label13.Text = (360 / (2 * 3.1416)) * 
System.Math.Atan(System.Math.Sin(TextBox1.Text * ((2 * 3.1416) / 360)) * 
System.Math.Tan(((2 * 3.1416) / 360) * 15 * (Label12.Text + Label6.Text))) 
        Label14.Text = -Label13.Text 
        Label17.Text = (360 / (2 * 3.1416)) * 
System.Math.Atan(System.Math.Sin(TextBox1.Text * ((2 * 3.1416) / 360)) * 
System.Math.Tan(((2 * 3.1416) / 360) * 15 * (1 + Label6.Text))) 
        Label18.Text = (360 / (2 * 3.1416)) * 
System.Math.Atan(System.Math.Sin(TextBox1.Text * ((2 * 3.1416) / 360)) * 
System.Math.Tan(((2 * 3.1416) / 360) * 15 * (1 - Label6.Text))) 
 
. . . . . . 
        
    End Sub 
End Class 
 



www.illustratingshadows.com 

Feb 10, 2014 ~ this may be distributed freely provided the web site credit  
and this notice are retained 

8

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The final program can be published, and of course it asks where to. Selecting a CD does not 
eliminate the fact that when the program is installed elsewhere, it still needs to download all sorts 
of Microsoft run time facilities. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



www.illustratingshadows.com 

Feb 10, 2014 ~ this may be distributed freely provided the web site credit  
and this notice are retained 

9

PROGRAMMING IN VISUAL BASIC .NET 2003 Learning Edition (Microsoft) 
 
Visual Basic .net 2003 is available for less than $100 including shipping. It arrives with a full book 
and a number of CDs. The installation process, while taking a lot of time, is simple. The system 
worked first time, and was easy to use. The Visual Basic Express code was ported pretty much 
as-is with the labels changed due to different labeling sequences. 
 
However, the program was enhanced with a graphical depiction of the hour lines, this was simple 
trigonometry. The "hour label" was moved from a set of labels, and what was left was identified 
as non displayed hours. The code for moving the labels was not elegant since it was a series of 
relocations for each hour, as opposed to a loop. This was because no easy method was found to 
iterate through a set of labels. 
 
Additionally, buttons were left blank until enabled. The following is the code that runs when the 
INITIALIZE button is clicked. 
 
    Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) 
Handles Button1.Click 
 
        REM *** initialization stuff *** 
 
        Label1.Text = "horizontal dial setup" 
 
        TextBox2.Text = 32.75 
        TextBox3.Text = 108.2 
        TextBox4.Text = 105 
 
        Label3.Text = 4 * (TextBox3.Text - TextBox4.Text) / 60 
 
        Button2.Text = "CALCULATE" 
 
    End Sub 
 

The following is the code that runs when the CALCULATE button is clicked. 
 
    Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) 
Handles Button2.Click 
 
        REM *** display hour line data *** 
        Label1.Text = "Horizontal Dial figures ready" 
 
        Label3.Text = 4 * (TextBox3.Text - TextBox4.Text) / 60 
 
        Button2.Text = "calculated" 
 
        Label10.Text = (360 / (2 * 3.1416)) * 
System.Math.Atan(System.Math.Sin(TextBox2.Text * ((2 * 3.1416) / 360)) * 
System.Math.Tan(((2 * 3.1416) / 360) * 15 * (0 + Label3.Text))) 
        Label11.Text = -Label10.Text 
 
        Label14.Text = (360 / (2 * 3.1416)) * 
System.Math.Atan(System.Math.Sin(TextBox2.Text * ((2 * 3.1416) / 360)) * 
System.Math.Tan(((2 * 3.1416) / 360) * 15 * (1 + Label3.Text))) 
        Label15.Text = (360 / (2 * 3.1416)) * 
System.Math.Atan(System.Math.Sin(TextBox2.Text * ((2 * 3.1416) / 360)) * 
System.Math.Tan(((2 * 3.1416) / 360) * 15 * (1 - Label3.Text))) 
 

. . . . . 
 
        Button3.Text = "DRAW" 
 
    End Sub 



www.illustratingshadows.com 

Feb 10, 2014 ~ this may be distributed freely provided the web site credit  
and this notice are retained 

10

The following is the code that runs when the DRAW button is clicked. 
 
    Private Sub draw_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) 
Handles Button3.Click 
 
        REM *** DRAW *** 
 
        Dim darea As System.Drawing.Graphics 
        darea = Me.CreateGraphics 
 
        Dim pcolr As New System.Drawing.Pen(System.Drawing.Color.Red) 
        Dim pcolb As New System.Drawing.Pen(System.Drawing.Color.Blue) 
        Dim pcolg As New System.Drawing.Pen(System.Drawing.Color.Green) 
 
        REM *** Define top left right bottom of the drawable area 
        Dim lx, rx, xtox, xhalf As Integer 
        Dim xc As Integer 
 
        Dim ty, by, ytoy As Integer 
 
        REM *** set drawing area coordinates - X is 300+300 wide - Y is 300 
        lx = 10 
        xtox = 600 
        xhalf = xtox / 2 
        rx = lx + xtox 
        xc = (lx + rx) / 2 
 
        REM *** thus we have two half boxes each is 300 by 300 
        ty = 350 
        ytoy = 300 
        by = ty + ytoy 
 
        REM *** draw a boundary area and two 45 degree lines 
        darea.DrawRectangle(pcolr, lx, ty, xtox, ytoy) 
        darea.DrawLine(pcolr, xc, by, xc + xhalf, by - ytoy) 
        darea.DrawLine(pcolr, xc, by, xc - xhalf, by - ytoy) 
        darea.DrawLine(pcolr, xc, by, xc + 0, by - ytoy) 
 
        REM *** now draw hour lines 
        Dim i As Integer 
        Dim ii As Short 
 
        For i = -6 To +6 Step 1 
            Dim ang As Short 
            Dim xxx, yyy As Short 
            ii = i 
 
            REM *** derive the hour line angle 
            ang = (360 / (2 * 3.1416)) * System.Math.Atan(System.Math.Sin(TextBox2.Text * 
((2 * 3.1416) / 360)) * System.Math.Tan(((2 * 3.1416) / 360) * 15 * (ii - Label3.Text))) 
 
            REM *** work the coordinates - this is regardless of am or pm 
            If System.Math.Abs(ang) > 45 Then 
                xxx = xtox / 2 
                yyy = xxx / System.Math.Tan(((2 * 3.1416) / 360) * ang) 
            End If 
            If System.Math.Abs(ang) < 45 Then 
                yyy = -1 * (xtox / 2) 
                xxx = yyy * System.Math.Tan(((2 * 3.1416) / 360) * ang) 
            End If 
            If ang = 45 Then 
                xxx = xtox / 2 
                yyy = ytoy 
            End If 
 
            REM *** do scaling for whatever reason   
            xxx = 0.89 * xxx 
            yyy = 0.89 * yyy 
            REM that is poor coding, the 0.89 should be in a constant, not entered twice 
 
            REM *** draw the lines 
            REM if lines below the border we drop them 
            If i <= 0 Then 
                REM *** morning hours 
                If (by + yyy) <= by Then 
                    REM This line is above the border 
                    darea.DrawLine(pcolb, xc, by, xc - xxx, by + yyy) 
                End If 
            Else 
                REM *** afternoon hours 



www.illustratingshadows.com 

Feb 10, 2014 ~ this may be distributed freely provided the web site credit  
and this notice are retained 

11

                If System.Math.Abs(ang) > 45 Then 
                    REM not elegant but works 
                    xxx = -1 * xxx 
                    yyy = -1 * yyy 
                End If 
                If (by + yyy) <= by Then 
                    REM This line is above the border 
                    darea.DrawLine(pcolg, xc, by, xc - xxx, by + yyy) 
                End If 
            End If 
 
            REM *** at this point, ( xc - xxx, by + yyy ) are the line end points 
            If (by + yyy) <= by Then 
                REM *** this was a line within the boxed border 
                REM *** this code is not very elegant but it works 
                If i = -6 Then 
                    Label40.Location = New Point(xc - xxx, by + yyy) 
                End If 
                If i = -5 Then 
                    Label41.Location = New Point(xc - xxx, by + yyy) 
                End If 
                If i = -4 Then 
                    Label42.Location = New Point(xc - xxx, by + yyy) 
                End If 
                If i = -3 Then 
                    Label43.Location = New Point(xc - xxx, by + yyy) 
                End If 

   . . . . . 
                End If 
                If i = 6 Then 
                    Label52.Location = New Point(xc - xxx, by + yyy) 
                End If 
            End If 
        Next 
 
        Label2.Text = "hours NOT depicted" 
 
    End Sub 
 
 
 
To the right is a depiction of the tabular as well 
as graphical dial display. 
 
This code is not elegant in that iteration is not 
used. The code is structured, and is event 
driven. 
 
This code is a good model for additional work, 
and the logic in the DeltaCAD "macros" can 
easily be ported to this Visual Basic. 



www.illustratingshadows.com 

Feb 10, 2014 ~ this may be distributed freely provided the web site credit  
and this notice are retained 

12

STATUS AS OF 2014 
 
1. Envelop no longer available 
   does not work on Windows 8 
 
2. VB Express can be imported into Visual Studio with ease 
   has been imported in the Illustrating Shadows folders 
 
3. VB Net 2003 can be imported into Visual Studio with ease 
   has been imported in the Illustrating Shadows folders 
 
 


