
LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

1

IBM SYSTEM 360
SIMULATOR

supporting

 a graphical control panel
 an assembler
 with elementary macro support
 a link editor
 an execution phase with SVC support
 a core dump feature
 a trace feature
 many sample test programs
 two sundial programs for a horizontal and a vertical dial

NOTE: SIM360C has 16k of memory, programs start at 400, address displacements are
now 000 to FFF (4095), and an advanced core dump. It runs the H and V sundial
programs.

NOTE: To change core storage size, alter maxCoreBytes from 16384 to a new value
 To change start address, alter startAddrIs from 400 to a new value
 and then recompile the simulator in Lazarus.

 Simon Wheaton-Smith
 July 6, 2009
 LAZARUS-sim360c-notes.doc

LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

2

TO GET STARTED WITH THIS IBM 360 SIMULATOR

1. Unzip the sim360c zip file in any folder you so choose

2. Obviously run your virus checker, although all files on

 www.illustratingshadows.com

 are virus and spy-ware checked before all uploads

3. using MY COMPUTER go to the folder you just used

4. double click system360project.exe
 or ~0start here.bat

5. click the POWER ON button, then the IPL button

6. ensure the CONSOLE IN area has sysin.txt
 or your desired source code

7. then click INTERRUPT which has a code of '1' and it assembles the
 file named in the CONSOLE IN area

8. then click INTERRUPT again, which should now have a code of '2'
 which loads core storage. Also you will not that the code by the
 INTERRUPT BUTTON is now a 3

9. if desired, enter your latitude tens digit into switch 1, and the unit digit
 into switch 2, similarly load the longitude difference from the meridian
 into switches 3 and 4. Never place two digits into one switch.

10. click INTERRUPT which now has code 3, and the program will run.

11. click SYSTEM RESET then START and START again if you wish,
 which takes a core dump. Microcode in the IBM 360/2030 used this with
 090E in the rightmost rotary switches for a standalone dump.

12. look at the SYSPRINT file for your output, and SYSDUMP has the core
 dump. Buttons let you do this easily.

NOTE: This system uses POWER ON to establish the GUI display
area, and IPL to get things ready internally. INTERRUPT is used for things the
old BPS and BOS programs did, in this case, assemble, link, and execute.

NOTE: There are many small test files in the TEST folder and they are
all called TESTnn.TXT and you can move them to the simulator's folder, and
assemble them by placing their name in the CONSOLE IN area.

NOTE: This system provides a vertical as well as a horizontal sundial
program with latitude and longitude difference enterable by switches. A dial west
of meridian is assumed, for dials east of the legal meridian, use PM for AM and
vice versa.

LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

3

TO RECOMPILE THIS IBM 360 SIMULATOR

1. Install the Lazarus system, see page 15 approx of this booklet
 even for Vista win64, use the 32 bit version
 do not use the version with QT in the file name

 http://www.osalt.com/lazarus web site for Lazarus

 And locate the download link:

 http://sourceforge.net/project/showfiles.php?group_id=89339

 and locate the Windows 32 bit version even if you have a 64 bit machine.

YES lazarus-0.9.26-fpc-2.2.2-win32.exe 58455268 i386

 NO lazarus-qt-0.9.26-fpc-2.2.2-win32.exe 58420736 i386

 the version for Windows XP was about 58mb:

 lazarus-0.9.26-fpc-2.2.2-win32.exe

 but do NOT download:

 lazarus-qt-0.9.26-fpc-2.2.2-win32.exe

 because you will get very frustrated trying to locate: qtcore4.dll

2. Unzip the sim360c zip file in any folder you so choose

3. Obviously run your virus checker, although all files on

 www.illustratingshadows.com

 are virus and spy-ware checked before all uploads

4. Bring up Lazarus

5. select PROJECT, and then OPEN PROJECT

6. locate the folder from step 2

7 double click on the *.lpi file: system360project.lpi

8. to compile select RUN, if the compiler stops after the build and does not
 bring up the program, select RUN and RESET DEBUGGER

9. That is all there is to it.

LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

4

The first IBM 360 the author used at Thos Cook
& Son Ltd, this is a 360/30 and the author used
BPS, BOS, and DOS on this system.

Later he used the 360/50 and 65, the 370/145,
138, 148, 158 under various operating systems
including MFT and MVT, VS1/SVS, VS2/MVS,
then GCS under VM.

This simulator is close to the 360 architecture
however it has subtle differences. The source
code is open source and is very easy to extend
and even SVC code can be easily added.

The actual panel is larger than below, but the
panel below helps emphasize the features.

key notes

registers – ignore the
high order 1

program status

switches and buttons

hints on switches

asm, lnk, exec status

console input
current status

LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

5

SIM360C IS AN IBM 360 SIMULATOR WITH A BUILT IN ASSEMBLER, LINKER, AND
INSTRUCTION SIMULATOR, WITH TRACE, CORE DUMP, AND SVC SUPPORT.

Sim360c is a program that gives the flavor of Basic Assembler Language programming for an
IBM 360. It is a subset design that does not implement all the machine instructions of the IBM 360
or all of the pseudo instructions of an assembler for that machine.

Sim360c has three distinct phases, an assembler with its own three phases, a linkage editor, and
a simulator. The first assembler phase inserts macros, the second reads assembly language
instructions and generates machine language and an assembler listing, and also generates a
symbol and USING table. The third assembler phase completes symbols and addressability and
stores intermediate code and constant data. In the second simulator phase, after the assembler
phases, the link edit phase loads the final assembler output into core storage, and additional
checks are made. In the third simulator phase the program fetches and executes instructions.

RESTRICTIONS:

SVC is supported with SVC 1 for printing, SVC 2 for reading the four data rotary
switches, SVC 3 for a blank line, SVC 4 for reading 1052 input, SVC 5 for trace on/off,
etc, and SVC 14 for EOJ, etc. A list of SVC codes appears later.

Certain features that are completely absent include

the floating point hardware,
some decimal arithmetic feature,
some instruction formats of types SI and SS.

Recall that the idea is to give the flavor of, not an exact simulation. However, what is
implemented is reasonably faithful to the original.

NOTE: The console in area can be used in two ways:-

NOTE: INTERRUPT and code 1 means assemble, and the source file name comes from the
console input area which defaults to "360sysin.txt" but any file name in the simulator's folder can
be named.

NOTE: The console input area is always looked at when INTERRUPT and code 1 is used.
However, a program can use that area with SVC 4 for a single line of user text input.

FILENAMES:

 360sysin.txt default file that IPL and code 1 assembles, you can type in a
 different file name
 360syslog.txt console information and tracing is desired
 360sysdump.txt core dump with SYSTEM RESET, START, START
 360sysprint.txt print output that SVC 1 produces
 360sysMacro.txt macro library
 ~360asmPass1.txt check for macros expanded properly
 ~360asmPass1.txt check for *** ERROR ***, pass 1 output
 ~360asmPass2.txt check for *** ERROR ***, pass 2 output and object code

LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

6

With this simulator comes a horizontal sundial program hdial.asm which to be assembled and
executed is saved as 360sysin.txt although at INTERRUPT-1 time any file name can be
entered in the console input area. USING is supported for all registers and there can be several
CSECTs each with their own USING. The START ADDRESS for all programs is specified in the
simulator source code, with 400 being a wise choice.

SAMPLE PASS 1 OF ASSEMBLER OUTPUT

000400 HDIALPGM CSECT , MAIN PROGRAM
000400 >U 12 USING *,12 TELL ASSEMBLER
000400 RR 18 ra:rb LR 12,15 SET R12 AS BASE
000402 *
000402 *--
000402 *
000402 *******
000402 *BEGIN*-- GETSWITCHES
000402 *******
000402 * SWITCHES SAVED BY
000402 RR 1B ra:rb SR 1,1 CLEAR R1
000404 RR 1B ra:rb SR 2,2 CLEAR R2
000406 RR 1B ra:rb SR 3,3 CLEAR R3
000408 RR 1B ra:rb SR 4,4 CLEAR R4
000410 RR 0A ra:rb SVC 0,2 LOAD REG
000412 *******
000412 **END**-- GETSWITCHES
000412 *******
000412 RR 18 ra:rb LR 5,1 SEE IF ANY
000414 RR 1A ra:rb AR 5,2 SWITCHES
000416 RR 1A ra:rb AR 5,3 WERE ENTERED
000418 RR 1A ra:rb AR 5,4 BEFORE IPL 3
000420 RR 12 ra:rb LTR 5,5 TEST R5
000422 RX 47 ra xx:bb:dddd BC 08,BEGIN ZERO THEN

SAMPLE PASS 2 OF ASSEMBLER OUTPUT

000412 RR 18 05:01 LR 5,1 SEE IF ANY
000414 RR 1A 05:02 AR 5,2 SWITCHES
000416 RR 1A 05:03 AR 5,3 WERE ENTERED
000418 RR 1A 05:04 AR 5,4
000420 RR 12 05:05 LTR 5,5 TEST R5
000422 RX 47 08 00:12:0062 BC 08,BEGIN ZERO THEN

SAMPLE SYSLOG

POWER ON:
ASM PASS 1: started
ASM PASS 1: ended
ASM PASS 2: started
ASM PASS 2: ended
LINK EDIT: started
LINK EDIT: ended
EXECUTE:
EXEC: ADDR=0 CTR=1 OPCODE(S)=05C0 1B11 1B22 CC=0
 R0-3: 0 1 2 3 R4-7: 4 5 6 7
 R8-B: 8 9 10 11 RC-F: 2 7992 14 0
EXEC: ADDR=2 CTR=2 OPCODE(S)=1B11 1B22 1B33 CC=0
 R0-3: 0 0 2 3 R4-7: 4 5 6 7
 R8-B: 8 9 10 11 RC-F: 2 7992 14 0
. . .
EOJ:
CORE DUMP: started
POWER OFF:

LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

7

SAMPLE SYSDUMP

* CORE DUMP BEGIN - REGISTERS [DECIMAL]*

 GPR 0 56
 GPR 1 1456
 GPR 2 1080
 GPR 3 0
 GPR 4 0
...
 GPR 12 400
 GPR 13 328
 GPR 14 950
 GPR 15 1624

* CORE DUMP BEGIN - CORE STORAGE *
* NOTE - XX IS HEX OR DECIMAL *
* - X. IS CHARACTER *

CONTROL PROGRAM

DEC.ADR +0 +4 +8 +12 +16 +20 +24 etc
000000 :::::::: :::::::: :::::::: :::::::: :::::::: :::::::: ::::::::
000040 :::::::: :::::::: :::::::: :::::::: :::::::: :::::::: ::::::::
000080 :::::::: :::::::: :::::::: :::::::: :::::::: E.X.E.C. ::::::::
...
000280 :::::::: :::::::: :::::::: :::::::: :::::::: :::::::: ::::::::
000320 :::::::: ::::0A14 :::::::: :::::::: :::::::: :::::::: ::::::::
000360 :::::::: :::::::: :::::::: :::::::: :::::::: :::::::: ::::::::

USER PROGRAM
DISPLACEMENTS ARE DECIMAL, IF > 999 THEN THOUSANDS SHOWN ABOVE DDD
DEC.ADR +0 +4 +8 +12 +16 +20 +24 ...

000400 0 ...
 0400 18CF1B11 1B221B33 1B440A02 18511A52 1A531A54 12554780 C0621B00 ...
000440 1 0 1 ...
 0440 1B005000 C0421B00 181341F0 00101C0F 1A145010 C0420A03 0A034100 ...

SAMPLE SYSPRINT

HORIZONTAL SUNDIAL PROGRAM ON THE IBM SYSTEM 360 - - - S WHEATON-SMITH
==

 LATITUDE IS 033
 SIN(LAT) IS 0.544
 LONGITUDE DIF 003
 IN MINUTES 012

MORNING HOURS - - - - - - - - - - - - - - -
 HOUR FROM NOON [HA] HOUR LINE ANGLE
 005 [78] 069
 004 [63] 047
 003 [48] 032
 002 [33] 020
 001 [18] 010
 000 [03] 002
AFTERNOON HOURS - - - - - - - - - - - - - -
 HOUR FROM NOON [HA] HOUR LINE ANGLE
 001 [12] 007
 002 [27] 016
 003 [42] 027
 004 [57] 040
 005 [72] 060
==

Two sundials programs are provided, hdial.asm and vdial.asm (test98.asm), and latitude as well
as longitude are specifiable with the console switches.

LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

8

THE SYSTEM 360 ASSEMBLER AND LINK EDIT DESIGN

In pass one (Lazarus source code says pass0), macros are expanded. Then pass two (Lazarus
source code pass 1) saves labels and assigns instruction and constant sizes, and places a
generic instruction model and generic data models for instructions and constants. Pass three
(Lazarus source code pass 2) completes instructions, and assigns base/displacement addresses.
CSECT and USING is supported however unlike the real assembler, you cannot switch back and
forth among CSECTs at assembler time, as some IBM assemblers allowed. But you can have
very large programs provided each CSECT is kept to the span of one register. The maintained V2
simulator has 16K which you can expand, and has normal displacements allowed of 000 to 4095.

This link edit phase loads assembler output to core, and manages character constant loading.

THE SYSTEM 360 SIMULATOR ARCHITECTURE

The console, and the core dump, provide clues on how this simulator functions internally. The
System 360 obviously supports several arithmetic systems, however, this system internally does
things differently.

 SYSTEM 360 SIMULATOR

 half and full word binary Pascal decimal

 double word as in CVD Pascal decimal but with a sign byte in the last low order

 packed usable for UNPK

 character stores in alternating Pascal bytes

NOTE: as long as you program correctly, this is transparent to the programmer.

NOTE: however it is possible to misuse the code and still work, because of the internal workings
of this simulator.

NOTE: registers are thusly stored internally in Pascal decimal.

NOTE: instructions look as if they are in hex, in fact the two nibbles of an instruction are stored
as two Pascal characters.

NOTE: code that modifies itself will be incorrect. For this reason, code is assumed to be
reentrant, not just serially reusable.

KEY POINT: Because decimal is used as opposed to hex, for the most part transparently
provided good 360 coding techniques are used, displacements in B-DDD addresses can still be
up to 4095 because a special array (only visible in a core dump) handles thousands. Address
constants don’t need a special array, and can address CSECTs, and there is no limit on the
number of CSECTs, each of which has their own USING. Also the old BPS and BOS trick of
resetting a base and USING works, although this is terrible programming practice, the sundial
programs show this as commented code.

*** CORRECT CODE IF R1 HAS A DC F'xxx'
 LA 2,DWD GET ADDRESS OF DWD
 CVD 1,DWD CONVERT IT
 MVC SINLATH,6(2) FROM DWD+6

*** WORKS ON THIS SIM IF R1 HAS A DC OF
*** F'xxx' BUT IS WONT WORK ON Z390 ETC
 STH 1,SINLATH SAVE SIN LAT
 UNPK M3HDRSIN,SINLATH MAKE PRINTABLE

LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

9

THE SYSTEM
360 CONSOLE

[to the right is an earlier version of
the panel. The current panel is more
involved]

The PSW instruction address shows the last instruction executed when everything comes to a
screeching halt. It shows the condition code, the instruction, its address (again), and the
instruction counter.

The registers are shown in decimal.

In the simulator code, exceptions are not handled. Provided STRIP and UPX were not used,
Lazarus will take you to the source code that got upset. Either way, if the simulator crashes,
always do the following:-

 1. look at pass 1 for errors
 2. ditto for pass 2
 3. and the link edit may say there was a B-DDD error with a DDD > 999

The four data
switches each can
hold one digit 0-9,
and are read by
an SVC if desired.

The 1052 console
typewriter displays
output. It thus says if
assembling, linkediting,
or executing, or has hit
a problem or an EOJ
(SVC 14), etc.

POWER ON is needed before anything is displayed. POWER ON enables internal
software, and INTERRUPT with a code of 1 assembles, and with a code of 2 linkedits,
and with a code of 3 executes.

The interrupt button is on the left of the three switches, the IPL button is the right most.

The middle switch turns on and off tracing, the right controls assembly, link, or
execute. The left switch does nothing at present.

The 1052 can be read
by SVC 4 in the user
program

LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

10

Implemented mnemonic operation codes by type follow:

RR: most implemented including DR and MR
RS: not implemented LM STM
RX: most implemented

(The following extended mnemonics for BC and BCR are also implemented:

B BE BH BL BNE BNH BNL BNM NOP

The pseudo assembler instructions also exist: DC H F D C P
 CSECT USING
 END CNOP

The RX instructions can only accept a few combinations of operands. The memory designation,
will normally be a label. Base and displacement notation is allowed in some cases, but base,
index and offset notation is not allowed. Neither is a label followed by a + and constant.

The mask specification of the BC must be a simple decimal integer in the range 0-15. Normally
useful masks: such as B'1100' are not accepted.

Literals are not allowed, use constants, and if code is large, use multiple CSECTs and address
constants.

The type specifications for a DC are H, F, D, C and P

UNPK requires you to study the source field, define a DC P or DC C of an appropriate length.
That target field's length determines the entire operation, in other words the source length field is
not used.

EQU is supported but only with the implied operand of "*", useful for code such as:-

 LA 0,ENDOFCON END OF A CONSTANT AREA defined as EQU *
 LA 1,STROFCON START OF CONSTANT AREA defined as DC C'...'
 SR 0,1 R0 = SIZE, R1 = AREA
 SVC 1 WRITE A LINE

I/O is provided by SVC, and the SVC codes are shown later in this document. SVC code is
implemented in the simulator's I-CYCLE phase (EXECUTE) and not in low or high core as part of
a control program. The only control program or any other stuff places in low or high core is the
SVC 14 that R14 points to at program start up (to simulate MVT code conventions) and a save
area to which R13 points on entry, also for MVT conventions. DOS (IBM 360 DOS) conventions
work, namely BALR 12.0/USING *,12 and EOJ also work.

NOTE: Document A22-6821-0 is available online in a number of places and is the IBM System
360 Principles of Operation.

LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

11

SOME GUIDELINES FOR SIM360C

The format for an assembly language statement is:

 1.......10....16.......................41......................
 [LABEL] OPCDE OPERANDS COMMENTS

where: Label: is an optional 1-8 character label that identifies this statement or variable.

Opcode: one of the instructions of the machine, the opcode determines the format of the operand
field. Pseudo opcodes as well as simple macros are supported.

Operands: usually two or three operands with no intervening blanks. Macros only have one
operand available, and that must be in column 16, and is &PARM

Comments: Any text following the operands is ignored. A line starting with an asterisk (*) is
ignored as a comment.

Variables are declared using the DC (for initialization), there is no DS

A DC often has a label, so that it may be referenced using that label in an instruction. The
assembler uses the DC length attribute for SS instructions.

Op-codes implemented

*1 IC/STC is numeric not any character, as sim has decimal registers.

RR

05 BALR
06 BCTR
07 BCR
0A SVC
10 LPR
11 LNR
12 LTR
13 LCR
15 CLR
19 CR as CLR
18 LR
1A AR
1C MR
1E ALR as AR
1B SR
1D DR
1F SLR as SR

RX SI

40 STH
41 LA
42 STC *1
43 IC *1
45 BAL
46 BCT
47 BC
48 LH
49 CH
4A AH
4B SH
4C MH
4E CVD
50 ST
55 CL
58 L
59 C as CL
5A A
5B S
5C M
5E AL as A
5F SL as S
92 MVI
95 CLI

SS

D2 MVC
D5 CLC
F2 PACK
F3 UNPK
F8 ZAP
F9 CP

SS Decimal use only
one length in this
simulator.

RS

90 STM
98 LM

LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

12

Op-codes not implemented

RR

SPM 04

very unlikely

NR 14
OR 16
XR 17

RS RX SI

EX 44
CVB 4F
D 5D
SRL 88
SLL 89
SRA 8A
SLA 8B
TS 93
CLM BD
STCM BE
ICM BF

unlikely

BXH 86
BXLE 87

very unlikely

N 54
O 56
X 57

SS

XC D7
TR DC
TRT DD
ED DE
EDMK DF
SRP F0
MVO F1
AP FA
SP FB
MP FC
DP FD

unlikely

TM 91
NI 94
OI 96
XI 97

very unlikely

NC D4
OC D6
MVN D1
MVZ D3

CORE STORAGE

ab cd ef hex as in op-codes is stored looking like hex in 360
 nibbles as PC bytes

ab cd eS decimal packed is in 360 nibbles as PC bytes

A. B. C. character is stored as A~Z 0~9 etc in one nibble with the
 next nibble a "."

LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

13

MACRO FACILITY FOR THIS ASSEMBLER

The assembler has three passes, pass zero expands macros, pass one assigns labels and
instruction models, pass two completes the object code. Pass zero reads the macro file and
builds a list of macros, and when they are found in the source code they are expanded. Unlike the
IBM 360 assembler, &NAME and &PARM are special keywords and do not have to be on the
macro prototype.

*
* USER SOURCE CODE
*
* 1...5...10...15...20...25
* label macro parm
* | |
* | +---> inOperands -> &PARM
* |
* +------------------> inLabel ----> &NAME
*
* When &NAME found then inLabel is substituted if in cols 1-8
*
* When &PARM found then inOperands is substituted if in cols 16 on
*
* NOTE: &NAME and &PARMS are special words so use them and do not
* use other &values
*
* NOTE: When &PARM is used, you must leave at least 3 spaces
* for example
* DC A(&PARM) is wrong
* DC A(&PARM) is correct

the left is
the same
as the right

Look at 360sysMacro.txt for macro availability. For example, EOJ is a macro and expands as
follows:-

000224 *******
000224 *BEGIN*-- EOJ EXIT
000224 *******
000224 RR 0A 01:04 SVC 1,4
000226 *******
000226 **END**-- EOJ EXIT
000226 *******

 MACRO
&NAME CALL &PARM
 CNOP 0,4
&NAME BALR 15,0
 BAL 15,8(15)
 DC A(&PARM)
 L 15,0(15)
 BALR 14,15
 MEND

 MACRO
 CALL
 CNOP 0,4
&NAME BALR 15,0
 BAL 15,8(15)
 DC A(&PARM)
 L 15,0(15)
 BALR 14,15
 MEND

LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

14

OPERATING SYSTEM SUPPORT FOR THIS SIMULATOR

The simulator includes an assembler with elementary macros, a link editor which mostly loads
compiled programs into core, and an execution phase. Programs are of little use if they cannot
read requests and cannot output answers.

INPUT ~ The simulator provides two SVC codes for reading the console in area and the switches

on the CPU console. Just make sure that the switches are set and the console in area
loaded before executing the program with IPL and code 3.

OUTPUT ~ The simulator allows a text area of a given size to be printed to SYSPRINT, and this

is handled with an SVC code.

SVC SUPPORT ~ is in the execute phase of the simulator, and is very easy to modify.

 SVC 1 R0=area size R1=DC C area print ioarea to SYSPRINT.TXT
 SVC 2 R1, 2, 3, 4 these four registers have the contents of
 switches 1, 2, 3, 4 set before IPL code 3
 SVC 3 print one blank line to SYSPRINT.TXT
 SVC 4 R0=area size R1=DC C area place in this area text in the 1052 input
 area that set before IPL code 3
 SVC 5 R0=0 for off, 1 for on turn trace on or off, uses SYSLOG.TXT
 SVC 6 R0=area size R1=DC C area print ioarea to the 1052

SVC 7 R0=offset shift right print lines by an offset

CONTROL PROGRAM (MFT and MVT) or SUPERVISOR (DOS) ~ The simulator loads low core
(memory) with a few things. First, if the STARTADDRIS value is less than 100 then there
is no such preloading, and all programs should follow DOS conventions. DOS demands
the user load a base and terminate with EOJ.

 PROGRAM CSECT
 BALR 12,0
 USING *,12
 - - - - - - - - - - -
 EOJ

 Whereas MFT/MVT preloads R15, and a BR 14 (or a RETURN) terminates a program.

 PROGRAM CSECT
 USING *,12
 LR 12,15
 - - - - - - - - - - -
 BR 14

As long as STARTADDRIS is appropriate, then low core has a save area established and an
SVC 14 as well, and they are above the PSW old and new areas. So, with the default
STARTADDRIS = 400 then any program may use DOS or MFT/MVT conventions. While the
simulator says what operating system conventions are used, this is informational only.

The core dump will show an EOJ in low core (0A14) and a save area, and the SVC new PSW
interrupt address will say EXEC. The EOJ/0A14 and the save area are for real. The EXEC is not
for real, it is just a clue that the execute phase of the simulator handles the SVC calls.

LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

15

LAZARUS Open Source version of, and almost compatible with: DELPHI:

At this website there are some downloads for Lazarus: http://www.osalt.com/lazarus

And locate the download link: http://sourceforge.net/project/showfiles.php?group_id=89339

and locate the Windows 32 bit version even if you have a 64 bit machine.

YES lazarus-0.9.26-fpc-2.2.2-win32.exe Mirror 58455268 i386

 NO lazarus-qt-0.9.26-fpc-2.2.2-win32.exe Mirror 58420736 i386

the version for Windows XP was about 58mb: lazarus-0.9.26-fpc-2.2.2-win32.exe

but do NOT download: lazarus-qt-0.9.26-fpc-2.2.2-win32.exe
because you will get very frustrated trying to locate: qtcore4.dll

documentation is available online at a url something like:-

 http://wiki.lazarus.freepascal.org/Lazarus_Documentation#Lazarus_and_Pascal_Tutorials

The download is one single file, installs first time, and runs first time. The tutorial to get started is
helpful, and located at:-

 http://www.lazarus.freepascal.org/
 http://wiki.lazarus.freepascal.org/Lazarus_Tutorial

DELPHI

This can be compared to DELPHI, which is 332 mb, and the pre-reqs another 234 mb. Delphi can
be found at: http://www.turboexplorer.com/delphi

COMMENTS

LAZARUS is an Open Source program, based on PASCAL, and is somewhat compatible with
Delphi.

One of the shortcomings of JAVA, and other object oriented languages is their type conversion
issues. The graphical program for sundials highlights this problem, namely converting from
floating point to integer requires an intermediate string conversion! Harking back to IBM's PL/I
language, some lessons that the new language developers could learn emerge.

First: PL/I had as one of its values the concept that if a programmer could write something that
made sense to him or her, then the PL/I compiler should also be able to make sense of it. All
these newer languages or language adaptations are very weak on real world needs of
commercial programmers, and seem to be more suited to those who delight in getting around
complexities of a language. LAZARUS is no exception, and the documentation is designed for
those who already know the system.

Second: PL/I had the ability for almost any data type to be converted implicitly so that a
programmer could take in a string of characters that contained numbers and implicitly convert it to
an integer, or floating point number, and vice versa.

LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

16

A PROJECT'S HIERARCHY

In LAZARUS, as in Microsoft's VISUAL languages, there is a hierarchy. In a conventional
program there is always a main program, and it calls sub programs, that use functions as well as
language structure.

Lazarus, based on PASCAL, at least doe not confuse inherent language function with functions
and classes. Some languages tae classes to extreme and the blurring of those discrete
boundaries causes programmers to fight the language in order to achieve the end goal.

There is a hierarchy in Lazarus similar to that of Visual Basic. The front end is the FORM.

The FORM is what essentially starts up when the "project" is executed, and one or more buttons
in the form trigger code. And that code can use variable data such as the TEDIT areas.

 PROJECT projectname.lpi

 FORM aame.lfm

 BUTTON TEDIT

 code programname.pas

FORM

 BUTTON TEDIT

LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

17

NOTES ON LAZARUS

Lazarus has an IDE and the forms window is simple to use to design a form that will drive the
program. The content and activities for each button are intuitive.

Running a program that you built as an application may cause the debugger to crash. The
debugger is how the IDE runs programs. However, locate the folders in which the programs are
stored, bring up those folders and double click the program, and all will run, albeit without
debugging. The folder containing the program can be found by SAVE AS, or by looking at the
area circled in the about picture of the Lazarus IDE desktop.

The cause of Lazarus problems in execution is simple, the designers and implementers did not
manage folders with blanks in a name. So, if you wish to debug in Lazarus, you must save files in
a folder or chain of folders whose names from the root folder up to the folder holding the project,
have no names with blanks in them.

This issue of blanks in a name is not uncommon, so simply create folders with no blanks in their
names for Open Source systems.

NOTE: Please refer to file: LazarusProgrammingNotes.pdf for detailed notes
 on Lazarus programming, the preceding two pages are merely an overview.

LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

18

LAZARUS – REDUCE EXECUTABLE FILE SIZE

Lazarus files are very large, some 12mb for a small program. This is because of enormous
amounts of debug data. And while the compiler can remove that, there are bugs, so that is not an
option.

The solution is to locate programs STRIP and UPX, however they only work on 32 bit systems.

STRIP is Pascal specific and locates and removes the debug data after the fact, making the
executable some 20% of its original size, 12mb becomes less than 2mb.

UPX works on any executable, and shrinks the executable even further, some 2mb becomes
about 0.5mb.

c:\whereever\lazarus\fpc\2.2.2\bin\i386-win32\strip

move to your folder

go to that folder

do "strip --strip-all system360project.exe"

which reduces it from 12mb to just under 2mb

c:\whereever\lazarus\fpc\2.2.2\bin\i386-win32\upx

move to your folder

go to that folder

do "upx system360project.exe"

which reduces it from just under 2mb to just under 0.5mb

WINDOWS VISTA WIN64 ISSUES

The Lazarus 32 bit system works on Windows XP as well as Vista win64, and generated code
can be compressed with STRIP and UPX. However, the 64 bit version of Lazarus produces code
than will not run on win32 nor on Windows XP, and cannot be compressed either with STRIP and
UPX since they do not support 64 bit executables. At best, WINZIP will do a fair job of
compression.

LAZARUS APEARS TO HANG AFTER “RUN”, AND THE PROGRAM DOES NOT APPEAR

Lazarus 32 bit in Vista sometimes does not bring up the program after a RUN. Click RESET
DEBUGER, when all proceeds normally. However you will get an OOPS message from Lazarus
when your program ends, which you can ignore.

LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

19

RELEASE NOTES

{***
**
*** ***
*** I B M S Y S T E M 3 6 0 ***
*** ***
*** GUI version of a simple system 360 model 30 ***
*** ***
*** * Supports displacements >999, i.e. 000 to FFF (4095) ***
*** * Has 16k of main memory, amd maxCoreBytes is this value ***
*** * Vista win64 and XP win32 as far back as SP1 ***
*** ***
**
*** ***
*** L I N K E D I T N O T E S ***
*** ***
*** B:DDD displacements are in decimal ***
*** displacements > 999 now handled, inefficiently, by a special ***
*** separate core array to hold thousands so ddd range ***
*** is 000 to 4095 ***
*** ***
*** Core storage is two PC bytes per IBM 360 byte ***
*** for character constants they exist as C.H.A.R.A.C.T.E.R. ***
*** constants such as A, F, H are saved normally but as decimal ***
*** Only seen in a core dump is the special array holding the thousands ***
*** for displacements > 999. Remember this is a decimal ASCII 360 ***
*** ***
*** This sim uses decimal where it possibly can and that plus ***
*** two for one bytes in core storage make everything ***
*** simpler most of the time. ***
*** ***
**
*** ***
*** E X E C U T E P H A S E N O T E S ***
*** ***
*** ***
*** SUPERVISOR CALLS IMPLEMENTED ***
*** SVC 1 PRINT CHARS IS DONE BY SVC 0,1 AND R1:DATA R0:SIZE ***
*** SVC 2 READ 4 SWITCHES ***
*** SVC 3 PRINT ONE BLANK LINE ***
*** SVC 4 GET CONSOLE IN AREA ***
*** SVC 5 TRACE ON OR OFF ***
*** SVC 6 DISPLAY SOME OUTPUT INTO THE CONSOLE AREA ***
*** SVC 7 OFFSET PRINTOUT BY THIS MANY BYTES ***
*** SVC 14 TERMINATE USER PROGRAM ***
*** ***
*** MACROS SUPPORTED ***
*** GETSWITCHES CALL SAVEAREA EOJ and others, see 360sysMacro.txt ***
*** ***
*** B:DDD displacements are in decimal and assembler as well ***
*** as linkedit detect displacements > 999, and the link phase uses ***
*** another array for thousands in the ddd fild ***
*** ***
*** Core storage is two PC bytes per IBM 360 byte ***
*** character constants which are C.H.A.R.A.C.T.E.R ***
*** other constants such as A, F, H are saved normally ***
*** ***
*** This sim uses decimal where it possibly can and that plus ***
*** two for one bytes in core storage make everything ***
*** simpler most of the time. ***
*** ***
*** Code is assumed to be reentrant, namely it cannot ***
*** change itself. Actually it can, but it is not ***
*** supported mainly because of the HEX and DECIMAL ***
*** concepts used in this simulator, thus BIT and HEX ***
*** per se are not properly implemented. ***
*** ***
*** Decimal SS instructions, eg CP and ZAP etc, use one length field ***
*** and thus both operands must be the same length. ***

LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

20

*** ***
*** Program with consideration to the above, and it works well. ***
*** ***
*** Refer to "LAZARUS-sim360c-notes.doc" for current details and ***
*** lists of what is and is not supported ***
*** check the IBM 360 page of www.illustratingshadows.com ***
*** ***
**
**

 ================================ begin credits ==============================

 Sim360 was inspired by several items. One was the Sim360a and Sim360b written
 in Pascal based on BAL/SX written by the following persons:-

 Stanley A Wileman 1981
 Curt Hall 1995 2007
 Simon Wheaton-Smith 2009

 Second, on a 370 simulator that ran on the 370 itself, strange you may say, but
 the reason was to provide much better online debugging than MVS provided, and
 third, on the IBM 1401 simulator I wrote in the late 1960s that supported the
 sterling feature, but it had to be object deck compatible. Also, this simulator
 fulfils a fantasy I had about what a 360 would have looked like if it had been
 decimal based as opposed to the much wiser choice of hexadecimal. I had studied
 the Amdahl patent for the 360 in the early 1970s, and it held me in awe.

 So, here is a decimal based IBM 360 which allows 'binary' as in register work
 as well as decimal as in CVD, and character as in UNPK. And this supports a
 start address allowing a control program to be in low core if desired, and it
 supports multiple CSECTs each with USINGs if desired, and the TEST99.TXT program
 for a horizontal dial demonstrates all that. Because of the decimal base rather
 than a hex base system, B-DDD were limited to a displacement of 999 and not 4095,
 and the assembler pass 2 and the linkedit detect this. However, June 24, 2009
 this limit was lifted with a new array for thousands in the displacement.

 Because of all this, the control panel displays registers in decimal.

 This program is open source under the GNU common license terms, you may copy
 it and extend it and so on with the sole provise that these historical notes and
 credits are retained. And while this uses little of Stanley A Wileman's and
 Curt Hall's work, some of their concepts were used and thus their credit should
 be retained.

 Simon Wheaton-Smith
 March 8, 2009
 www.illustratingshadows.com

 ================================ end of credits ==============================

 * Feb 4 2009 basic elements of pass 1 of the assembler are in place
 most opcodes supported and pseudo opcodes generated to pass 2
 but operands not generated except for DC and USING
 * Feb 7 2009 symbol table complete and pass 1 partial code outputted
 * Feb 12 2009 pass 1 and pass 2 complete but still need

 * SS with a label(size)
 * char limitation is 20 in a DC C'...'
 * displacements are saved as decimal nnn and thus max 999
 * displacements > 999 are flagged in assemble and linkedit
 * need to handle LM and STM operans formats
 * label+disp is not implemented
 * because hex and bit methods are not fully enabled, and
 because of our hex:char methodology, code should be written
 as re-entrant, not just serially reusable.

 * Feb 19 2009 Altered character constants from CHARACTER......... internally
 to C.H.A.R.A.C.T.E.R. which only involved LINK and EXEC
 and no changes at all to PASS 1 and PASS 2 assembler phases.
 * Feb 19 2009 CR, CH, C, CL works, BC assembles, and BH BE BL BNE is ok

LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

21

 in EXEC phase
 * Feb 20, 2009 KEY POINT: "IBM binary" in this simulator decimal, and that
 works fine as long as BIT INSTRICTIONS (TM, etc) are not used.
 Binary in coreStorage is actually string, but in registers
 it is longInteger.

 KEY POINT: "IBM Decimal" is saved in this simulator as decimal
 also, however it has a sign "C" eg, as the last low order digit.

 THUS: 4E CVD IBM: register binary to core storage decimal
 SIMULATOR: BECAUSE OF HOW WE IMPLEMENT
 BINARY as decimal
 DECIMAL as string decimal plus a sign
 actually takes [PC] decimal in a simulated
 register to corestorage as string with a sign.

 * Feb 21, 2009 DC P added, and PACK and UNPK working, see TEST 11
 BAL r,label A AL added
 BR added S added
 * Feb 22, 2009 BCT AND BCTR COMPLETE SEE TEST 14
 BNL BHE and BNH BLE and LTR added along with BZ
 Assembles, links and executes TEST99 as 360sysin.txt which
 is the SIM360A or SIM360B HDIAL program modified to use MR and
 DR and with SVC 1 instead of their PUTM and PUTD, etc.
 multiple USINGs can be used for subroutines and CSECTs
 * Feb 23, 2009 SVC 5 added, and a documentation package: LAZARUS-sim360c-notes.pdf
 * Feb 24, 2009 CNOP inserts 0700 etc but only if address is on a hwd boundary
 * Feb 25, 2009 Available on www.illustratingshadows.com web site as 'SIM360C'
 CLC and MVC added, ZAP CP added (as with PACK, this assumes L1=L2)
 * Feb 26, 2009 Better use of color at startup and on B-DDD error in LINKEDIT
 * Feb 27, 2009 Source file to assemble with IPL 1 is now named in the console
 input area, default is 360sysin.txt but it can be overridden
 MVI label,X'xx' and MVI label,C'c' added, and if hex
 then nibbles are xx pair, if char then nibbles are C. with
 the period '.' indicating this was a character and not hex
 CLI label,X'xx' and CLI labelC'c' added and same
 nibble notes at MVI
 * Mar 1, 2009 STC and IC added, however it does assume the inserted character
 is numeric as all registers are DECIMAL NUMERIC in this sim. TEST21.
 AH and SH and MH added and M and SL, see TEST22.
 Advisory if any instruction is not true 370 compatible
 EQU added but only for *, and not for a label
 Message cleanup on compatibility issues, check HDIAL.ASM (TEST99)
 for notes. For example, DC H and F are stored as packed no sign,
 so CVD and UNPK work correctly, but you can cheat with just UNPK
 but you will lose compatibility.
 * Mar 3, 2009 Just as this uses decimal for internal usage (registers, DC H and F),
 it also uses the ASCII as opposed to EBCDIC collating sequence.
 LM and STM added for r1<, -, > r2 see TEST25
 * Mar 4, 2009 Panel header clarifies that while ASCII is used vs EBCDIC, and while
 registers are internally decimal, correct code works, eg
 L 1,F'1234'
 CVD 1,DWD
 UNPK xxx,DWD
 F1234 DC F'1234'
 works even though the DC F is stored as decimal. As for ASCII vs
 EBCDIC the main issue is numeric 0 is lower than letter A, not
 higher than letter Z. And since the assembler pass 2 listing
 highlights compatibility issues, it is not a big deal. And allowing
 address constants and CSECTs with their own USINGs, as in TEST99,
 the system is very functional.
 * Mar 7, 2009 Elementary MACRO facility added as pass 0, rules are in the file
 called "360sysMacro.txt" as supplied. These are very simply macros
 with one parametric name label and one parameteric operand only
 * Mar 8, 2009 MNEM and associated tables simplified. SVCs now read 1052 and
 switches directly, INTERRUPT 1 and 2 no longer used. Program
 STARTADDRIS recommended to be 400 since we set MFT/MVT register
 conventions and that places an SVC 14 above control program
 old and new psws, although 200 works. DO NOT USE 0 because
 the system will object since the initial save area and SVC 14 used
 for MFT/MVT conventions will be upset. TEST27 and TEST28 show DOS

LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

22

 and MFT/MVT conventions working. Clean up code for consistency.
 SYSTEM RESET and START buttons added for future use.
 SVC 6 added to send text to the 1052.
 * Mar 9, 2009 INTERRUPT no longer triggers a core dump, it sets a message only.
 A core dump now happens with SYSTEM RESET, START, START which in
 days of old was a PSW RESTART on the 2030, but if the rightmost
 four switches were 090E then a core dump was taken.
 Added SVC 7 to allow print line offset.
 * Mar 11, 2009 Trivial stuff, and refinements to the sundial H program. And name
 for linkedit phase is also user inputable, and radio buttons as
 markers as a visual aid.
 * Mar 15, 2009 Resequenced buttons, so that POWER ON is first, then IPL which
 enables the "software", and INTERRUPT with 1,2,3 to assemble,
 link, and execute is next (as opposed to using IPL 1,2,3).
 hdial.asm (test99.txt) as well as vdial.asm (test98.txt) added,
 also hdial/test99 shows how to make more code addressable by
 doing a poor technique used back in BPS and BOS days.
 Misc refinements to the panel. Corrected loop detect in LOG.
 * Mar 24, 2009 Changes from Tlabel to TstaticText on PSW, instructions, and
 the registers, so they flash and look pretty. Same in the
 1401 simulator.
 * Apr 11, 2009 Cosmetic changes.
 * Apr 20, 2009 viewASM and viewDUMP as well as viewLOG and viewPRINT added.
 * Apr 26, 2009 Compiled on VISTA 64 bit.
 * Apr 28, 2009 Common version win32 works on XP and Vista win 64

 //
 * 20090624 FOR DISPLACEMENTS > 999
 * coreStorageK: This is a blank or 0, except when a B-DDD DDD
 * has 1,2,3,4000
 * baseDispK: also is a 12 byte constant in IFETCH logic for
 * big displacements
 * Two lines of code are commonly used for displacements > 999
 * disp := disp + 1000*strToInt(baseDispK[6]);
 * disp := disp + 1000*strToInt(baseDispK[10]);
 * Linkedit tests for ddd>4095 and updates CPU panel and log if found
 //
 * June 28, 2009 Cosmetic changes
 * June 30, 2009 Core dump only shows 1000s if a displacement was > 999
 * July 1, 2009 maxCoreBytes is user memory area, and the arrays are twice that,
 originally it was the other way around in the Version 1 sim.
}

SIMULATOR VERSIONS

sim360a used the Bloodshed 8mb free Pasal compiler and was limited in
 what it supported but worked well. The 8mb compiler is short on
 documentation but uses modern Windows panes.
sim360b used the Free Pascal 28mb compiler and was otherwise the same
 as sim60a. The 28mb compier has good documentation but is
 hard to use in that it styles itself after DOS windows.
sim360c version 1 only allowed displacements in B-DDDs o be 999, had 4k of user
 memory, and is frozen. First Lazarus version.

sim360c version 2 allows full displacements of 0000 to 4095, has 16k of memory
 which you may expand (maxCoreBytes), and the core dump
 also shows full displacements.

Open Source sim360c is open source.

LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

23

SOURCE CODE FOR A HORIZONTAL SUNDIAL PROGRAM THAT RUNS ON SIM360C

* *** *
* * HORIZONTAL DIAL FOR THE IBM 360 * *
* *** *
*
* TEST99 SUNDIAL PROGRAM ALSO SAVED AS HDIAL.ASM
*
* THIS IS FOR SIM360C - OTHER VERSIONS FOR OTHE SIMULATORS
*
* NOTE THE COMPATIBILITY NOTES THAT SIM360C ADDS TO THE END OF
* A LISTING. AND SEE SOME NOTES IN THIS CODE ALSO.
*
* WWW.ILLUSTRATINGSHADOWS.COM SIMON WHEATON-SMITH MARCH 11, 2009
*
* -
*
* HORIZONTAL SUNDIAL PROGRAM ON THE IBM SYSTEM 360
*
* LATITUDE IS 033
* SIN(LAT) IS 0.0544
*
* LONGITUDE DIF 003
* IN MINUTES 012
*
* MORNING HOURS - - - - - - - - - - - - - - -
*
* HOUR FROM NOON [HA] HOUR LINE ANGLE
*
* 005 [78] 069
* 004 [63] 047
* 003 [48] 032
* 002 [33] 020
* 001 [18] 010
* 000 [03] 002
*
* AFTERNOON HOURS - - - - - - - - - - - - - -
*
* HOUR FROM NOON [HA] HOUR LINE ANGLE
*
* 001 [12] 007
* 002 [27] 016
* 003 [42] 027
* 004 [57] 040
* 005 [72] 060
*
*
*
* ===
*
* THIS DIAL IS WEST OF MERIDIAN
* IF EAST OF MERIDIAN SWITCH AM FOR PM
*
* CHECK WWW.ILLUSTRATINGSHADOWS.COM
* FOR THE LATEST PROGRAMS
*
* DOWNLOAD MICROSHADOWS.PDF FROM
* THE WEBSITE FOR TIPS AND FAQS
*
* -
*
*
* SIN COS TAN ATN ARE INVOKED WITH 'L 15' AND 'BALR 14,45'
*
* USES SVC 2 TO READ SWITCHES
* FORMAT OF THOSE FOUR SWITCHES IS A B C D
* A*10+B => LATITUDE
* C*10+D => LONGITUDE CORRECTION IF ANY
* BUT DONE WITH A MACRO 'GETSWITCHES'

LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

24

*
* MACROS GETSW GETS SW1-4
* EOJ DOES SVC 14
* CALL WITH THE SUBROUTINE ADDRESS INLINE
* CALLI CALL BUT THE PARAMETER BEING AN ADDRESS CONSTANT
*
* FOR NO GOOD REASON, AM HOURS USES MACROS, PM USES INLINE CODE
*
HDIALPGM CSECT , MAIN PROGRAM
 USING *,12 TELL ASSEMBLER
 LR 12,15 SET R12 AS BASE AS R15 PRESET BY SIM
*
*--
*
 GETSW GETS SW 1-4
* MUST BE SET BEFORE EXECUTE
 LR 5,1 SEE IF ANY
 AR 5,2 SWITCHES
 AR 5,3 WERE ENTERED
 AR 5,4 BEFORE IPL CODE 3
 LTR 5,5 TEST R5
 BZ BEGIN IF ZERO THEN
*
* SWITCHES
*
 SR 0,0 CLEAR R0 FOR MULTIPLY
* R1 IS SWITCH 1 IS LATITUDE
 LA 15,10 MULTIPLIER IS 10
 MR 0,15 IS THUS TIMES 10
 AR 1,2 ADD UNIT OF LATITUDE
 ST 1,LATITUDE ELSE GOOD DATA SO SAVE
*
 SR 0,0 SINCE WE GOT A LAT, ZERO OUT LNG DIF
 ST 0,LONGCORR OBVIOUSLY
*
 SR 0,0 CLEAR R0 FOR MULTIPLY
 LR 1,3 R1 IS SWITCH 3 IS LONGITUDE DIFF
 LA 15,10 MULTIPLIER IS 10
 MR 0,15 IS THUS TIMES 10
 AR 1,4 ADD UNIT OF LATITUDE
 ST 1,LONGCORR ELSE GOOD DATA SO SAVE
*--
*
*
*
BEGIN SVC 3 BLANK LINE
 SVC 3
 OFSET 15 SHIFT PRINT LINE BY 15 BYTES
*
* HORIZONTAL SUNDIAL PROGRAM ON THE IBM SYSTEM 360
*
 L 1,M2HDRADR TEXT
 LA 0,72 SIZE
 SVC 01 PRINT TEXT
 SVC 3 BLANK LINE
 L 1,M0HDRADR TEXT
 LA 0,72 SIZE
 SVC 1 PRINT TEXT
 SVC 3
 SVC 3
 SVC 3
 OFSET 30 SHIFT PRINT LINE BY 30 BYTES
*
* LAT IS XXX SIN(LAT) IS
*
 L 1,LATITUDE GET LATITUDE BINARY (PACKED DECIMAL NO SIGN)
 CVD 1,DWD AS PACKED DECIMAL WITH A SIGN
 LA 2,DWD SET R2 TO DWD
* LA 2,6(2) SET R2 TO NN NC
* UNPK M3HDRLAT,0(2) PRINTABLE CHARACTERS (STRING)
 UNPK M3HDRLAT,6(2) PRINTABLE CHARACTERS (STRING)

LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

25

*
 L 1,LATITUDE SET R1 EQ LATITUDE
 CALLI SINADR GET SIN - R1 IN = LAT, OUT = SIN
 ST 1,SINLAT SAVE SIN LAT
* THE FOLLOWING 3 WORK ON ALL 360 SIMS
 CVD 1,DWD CONVERT IT
 LA 2,DWD GET ADDRESS OF DWD
 MVC SINLATH,6(2) FROM DWD+6
 UNPK M3HDRSIN,SINLATH
*
 LA 1,M3HDR TEXT
 LA 0,31 SIZE
 SVC 1 PRINT
 LA 1,M3HDR1 TEXT
 LA 0,31 SIZE
 SVC 1 PRINT
 SVC 3 BLANK LINE
*
* LONGITUDE CORR IS XXX IN MINUTES XXX
*
 L 1,LONGCORR GET IN FULLWORD
 CVD 1,DWD IN DECIMAL
 LA 2,DWD SET R2 TO DWD
 UNPK M4HDRLNG,6(2) PRINTABLE CHARACTERS (STRING)
*
 SR 0,0 R0, R1 MULTIPLICAND
 L 1,LONGCORR GET LONGITUDE CORRECTION
 LA 15,4 R15 MULTIPLIER
 MR 0,15 MULTIPLY
 ST 1,LONGMINS SAVE RESULT
 CVD 1,DWD IN DECIMAL
 LA 2,DWD SET R2 TO DWD
 UNPK M4HDRMIN,6(2) PRINTABLE CHARACTERS (STRING)
*
 LA 1,M4HDR STATE LONGITUDE CORR
 LA 0,29 SIZE
 SVC 1 PRINT
 LA 1,M4HDR1 STATE LONGITUDE CORR
 LA 0,29 SIZE
 SVC 1 PRINT
 SVC 3 BLANK LINE
*
*
* D O M O R N I N G H O U R S
*
*
 L 1,M5HDRADR TEXT
 LA 0,43 SIZE
 SVC 1 PRINT
 SVC 3 BLANK LINE
 L 1,M6HDR1AD TEXT
 LA 0,43 SIZE
 SVC 1 PRINT
 SVC 3 BLANK LINE
*
*
--
* SWITCH TO A NEW BASE TO MAKE THIS ADDRESSABILITY LAST *
* NOTE.. THIS PROGRAM MAIN CSECT FIT WITHIN ONE USING *
* BUT DUE TO THE SEQUENTIAL MONOLITHIC CODE, THIS *
* TECHNIQUE WORKS TO EXTEND THE ADDRESSABILITY *
* BACK IN THE DAYS OF BOS AND BPS, THIS WAS USED. *
* NOTE.. THIS IS A VERY POOR TECHNIQUE, BUT BACK IN THE *
* OLD DAYS WHEN EVERY BIT COUNTED, THIS WAS DONE. *
* *
*--- BALR 12,0 NEW BASE *
*--- USING *,12 SAY OK *
* *
--
*
* AM HOUR ANGLE LOOP FOR THE HOURS

LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

26

*
 LA 6,5 R6 SET R2 TO 5 HOURS FROM NOON
*
HOURLOOP LA 15,15 R15 IS 15 DEGREES PER HOUR
 SR 0,0 R0, R1 MULTIPLICAND
 LR 1,6 R6 R1 IS HOURS FROM NOON
 MR 0,15 R1 WILL BE HRA WHICH IS HR * 15
 A 1,LONGCORR R1 NOW CORRECTED FOR LONGITUDE
 C 1,HDIAL90 IS ANGLE TOO HIGH
 BH HOURNEXT SKIP IF SO
*
 C 6,HDIALZRO IS THIS NOON
 BH NOTNOON1 NO
 C 1,HDIALZRO IS HR ANLG PLUS LONG CORR +VE
 BL HOURNEXT NEGATIVE LCLHA SO SKIP HLNA
*
* HOURS FROM NOON THEN HOUR LINE ANGLE
*
NOTNOON1 ST 6,HOURWORK R6 SAVE IN A WORK AREA
 CVD 6,DWD NOW PACKED DECIMAL
 LA 2,DWD POINT TO DWD
 UNPK M6HDRHRS,6(2) DECIMAL PRINT HOURS
*----------------------
 CVD 1,DWD SAVE HOUR ANGLE OF THE SUN
 LA 2,DWD INTO THE
 UNPK DC3,6(2) PRINT
 LA 2,DC3 LINE
 MVC M6HDRHRA,1(2) FYI ONLY
*-----------------------
 ST 1,HOURANGL SET R1 EQ SUNS HOUR ANGLE
 CALLI TANADR GET TAN OF HOUR ANGLE OF SUN
 ST 1,TANHOUR SAVE TAN HOUR ANGLE
*
 LA 0,0 CLEAR R0 FOR MULTIPLY
 L 1,TANHOUR R1 TO TAN HOUR ANGLE
 L 15,SINLAT R0 TO SIN OF LATITUDE
 MR 0,15 GET PRODUCT
 ST 1,TANHLA RESULT IS TAN OF HR LINE ANGLE
*
 SR 0,0 CLEAR FOR DR INSTRUCTION
 L 1,TANHLA GET TAN HOUR LINE ANGLE
 L 14,F1000 DIV BY 1000 AS SIN AND TAN
* ARE 1000 TIMES VALUES SO NOW
* TANHLA IS 1,000,000 TIMES
 DR 0,14 DIVIDE TANHLA BY 1000
 ST 1,TANHLA SAVE IT
*
 L 1,TANHLA GET PROPER TAN HLA (*1000 SO OK)
 CALLI ATNADR GET ANGLE OF THIS TAN, R1 IN AND OUT
*
 ST 1,HRLNANGL SAVE HOUR LINE ANGLE IN DEGREES
 CVD 1,DWD NOW PACKED DECIMAL
 LA 2,DWD POINT TO DWD
 UNPK M6HDRHLA,6(2) DECIMAL PRINT HOURS
 LA 1,M6HDR TEXT
 LA 0,42 SIZE
*
 SVC 1 PRINT IT
*
HOURNEXT S 6,HDIALONE R6 SUBTRACT FROM HOURS FROM NOON
 C 6,HDIALZRO R6 ARE THERE MORE TO GO STILL
 BNL HOURLOOP REPEAT
 SVC 3 BLANK LINE
*
*
* N O W D O A F T E R N O O N H O U R S
*
 L 1,M7HDRADR TEXT
 LA 0,43 SIZE
 SVC 1 PRINT
 SVC 3 BLANK LINE

LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

27

 L 1,M6HDR1AD TEXT
 LA 0,43 SIZE
 SVC 1 PRINT
 SVC 3 BLANK LINE
*
* PM HOUR ANGLE LOOP FOR THE HOURS
*
 LA 6,0 R6 SET R2 TO 0 HOURS FROM NOON
*
HOURAGIN LA 15,15 R0 IS 15 DEGREES PER HOUR
 SR 0,0 CLEAR R0
 LR 1,6 R6 R1 IS HOURS FROM NOON
 MR 0,15 R1 WILL BE HRA WHICH IS HR * 15
 S 1,LONGCORR R1 NOW CORRECTED FOR LONGITUDE
 C 1,HDIAL90 IS ANGLE TOO HIGH
 BH HOURMORE SKIP IF SO
*
 C 6,HDIALZRO IS THIS NOON
 BH NOTNOON2 NO
 C 1,HDIALZRO IS HR ANLG PLUS LONG CORR +VE
 BL HOURMORE NEGATIVE LCLHA SO SKIP HLNA
*
NOTNOON2 ST 6,HOURWORK R6 SAVE IN A WORK AREA
 CVD 6,DWD NOW PACKED DECIMAL
 LA 2,DWD POINT TO DWD
 UNPK M6HDRHRS,6(2) DECIMAL PRINT HOURS
*----------------------
 CVD 1,DWD SAVE HOUR ANGLE OF THE SUN
 LA 2,DWD INTO THE
 UNPK DC3,6(2) PRINT
 LA 2,DC3 LINE
 MVC M6HDRHRA,1(2) FYI ONLY
*-----------------------
 ST 1,HOURANGL SET R1 EQ SUNS HOUR ANGLE
 L 15,TANADR GET ADDRESS OF TAN
 BALR 14,15 GET TAN RETURNED IN R1
 ST 1,TANHOUR SAVE TAN HOUR ANGLE
*
 SR 0,0 CLEAR R0 FOR MULTIPLY
 L 1,TANHOUR R1 TO TAN HOUR ANGLE
 L 15,SINLAT R0 TO SIN OF LATITUDE
 MR 0,15 GET PRODUCT
 ST 1,TANHLA RESULT IS TAN OF HR LINE ANGLE
*
 SR 0,0 CLEAR FOR DR INSTRUCTION
 L 1,TANHLA GET TAN HOUR LINE ANGLE
 L 14,F1000 DIV BY 1000 AS SIN AND TAN
* ARE 1000 TIMES VALUES SO NOW
* TANHLA IS 1,000,000 TIMES
 DR 0,14 DIVIDE TANHLA BY 1000
 ST 1,TANHLA SAVE IT
*
 L 1,TANHLA GET PROPER TAN HLA (*1000 SO OK)
 L 15,ATNADR GET ATN SUBROUTINE
 BALR 14,15 GET ANGLE OF IT
*
 ST 1,HRLNANGL SAVE HOUR LINE ANGLE IN DEGREES
 CVD 1,DWD NOW PACKED DECIMAL
 LA 2,DWD POINT TO DWD
 UNPK M6HDRHLA,6(2) DECIMAL PRINT HOURS
 LA 1,M6HDR TEXT
 LA 0,42 SIZE
*
 SVC 1 PRINT IT
*
HOURMORE LA 6,1(6) R6 ADD TO HOURS FROM NOON
 C 6,HDIALSIX R6 ARE THERE MORE TO GO STILL
 BL HOURAGIN REPEAT
*
* *==*
*

LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

28

 CALL ENDNOTES END NOTES
*
 EOJ TIME TO SHUT DOWN
*
* ** *
* * INPUT PARAMETERS * *
* * *** ARE INPUT PARAMETERS * *
* * * * *
LATITUDE DC F'33' *** LATITUDE 33 * *
SINLAT DC F'0' * SIN OF LATITUDE FWD * *
SINLATH DC H'0' * SIN OF LATITUDE HWD * *
COSLAT DC F'0' * COS OF LATITUDE * *
* * * *
LONGCORR DC F'3' *** WEST 3 DEGREES OF MERIDIAN * *
LONGMINS DC F'0' EQUIVALENT MINUTES * *
* * * *
* ** *
*
* ** *
* * WORK AREAS * *
* * * *
HOURANGL DC F'0' AN HOUR ANGLE * *
HRLNANGL DC F'0' AN HOUR LINE ANGLE * *
F1000 DC F'1000' CONSTANT FOR DIVIDE ETC * *
TANHOUR DC F'0' TAN OF HOUR ANGLE * *
HOURWORK DC F'0' A HUMBLE WORK AREA * *
TANHLA DC F'0' TAN OF HOUR LINE ANGLE * *
HDIALONE DC F'1' 1 FOR LOOPS AS NO BCT/BCTR * *
HDIALZRO DC F'0' 0 FOR TESTS * *
HDIALSIX DC F'6' 6 FOR TESTS * *
HDIAL90 DC F'90' LIMIT OF 90 DEGREES * *
DC3 DC C'VVV' INTERMEDIATE AREA * *
 CNOP 0,8 * *
DWD DC D'0' * *
* ** *
*
*
*
*
* ADDRESSES OF SUBROUTINES
*
*
SINADR DC A(SINSUBR) ADDRESS OF SIN SUBROUTINE
COSADR DC A(COSSUBR) ADDRESS OF COS SUBROUTINE
TANADR DC A(TANSUBR) ADDRESS OF TAN SUBROUTINE
ATNADR DC A(ATNSUBR) ADDRESS OF ARCTAN SUBROUTINE
*
*
* ADDRESSES OF HEADERS
*
*
M0HDRADR DC A(M1HDR)
M2HDRADR DC A(M2HDR) ADDRESS OF HEADER *H-DIAL
M5HDRADR DC A(M5HDR) ADDRESS OF HEADER *AM~NOON
M6HDR1AD DC A(M6HDR1) ADDRESS OF HRS NOON HR LN ANGLE
M7HDRADR DC A(M7HDR) ADDRESS OF HEADER *PM~NOON
*
*
*
* HEADERS THEMSELVES
*
*
* 31 BYTE LINES ABOUT LATITUDE
*
M3HDR DC C' LATITUDE IS '
 DC C' '
M3HDRLAT DC C'XXX' UNPK CAME FROM CVD
 DC C' '
*
M3HDR1 DC C' SIN(LAT) IS '
 DC C' 0.'

LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

29

M3HDRSIN DC C'XXX' UNPK CAME FROM HWD
 DC C' '
*
* 29 BYTE LINE ABOUT LONGITUDE
*
M4HDR DC C' LONGITUDE DIF '
 DC C' '
M4HDRLNG DC C'XXX' UNPK FROM CVD
 DC C' '
*
M4HDR1 DC C' IN MINUTES '
 DC C' '
M4HDRMIN DC C'XXX' UNPK FROM HWD
 DC C' '
*
*
*
* 42 BYTE HEADER
*
M6HDR DC C' '
M6HDRHRS DC C'XXX'
 DC C' ['
M6HDRHRA DC C'XX'
 DC C'] '
M6HDRHLA DC C'XXX'
*
*
*
*
*
*
*
* ** *
* ** *
* * * *
* * C O N S T A N T S T H A T A R E N O T * *
* * BASE-DISPLACEMENT A D D R E S S A B L E * *
* * * *
* ** *
* ** *
*
*
*
*
*
 CNOP 0,8
HEADERTX CSECT ,
*
*
* 72 BYTE HEADER
*
M1HDR DC C'=================='
 DC C'=================='
 DC C'=================='
 DC C'=================='
*
*
* 48 BYTE HEADER BUT UP TO 132 IS OK
*
M2HDR DC C'HORIZONTAL SUNDIAL'
 DC C' PROGRAM ON THE IB'
 DC C'M SYSTEM 360 - - '
 DC C'- S WHEATON-SMITH'
*
* 43 BYTE HEADER
*
M5HDR DC C'MORNING HOURS - - - '
 DC C'- - - - - - - - - - '
 DC C'- -'
*
* 43 BYTE HEADER

LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

30

*
M6HDR1 DC C' HOUR FROM NOON'
 DC C' [HA] HOUR LINE ANG'
 DC C'LE '
*
* 43 BYTE HEADER
*
M7HDR DC C'AFTERNOON HOURS - - '
 DC C'- - - - - - - - - - '
 DC C'- -'
*
* 72 BYTE HEADERS
*
M9HDR DC C'THIS DIAL IS WEST '
 DC C'OF MERIDIAN. IF EA'
 DC C'ST OF MERIDIAN THE'
 DC C'N SWITCH AM FOR PM'
*
MAHDR DC C'CHECK WWW.ILLUS'
 DC C'TRATINGSHADOWS.COM'
 DC C' FOR THE LATEST PR'
 DC C'OGRAMS '
*
*
MBHDR DC C'DOWNLOAD MICRO-'
 DC C'SHADOWS.PDF FROM'
 DC C' THE WEBSITE FOR T'
 DC C'IPS AND FAQS '
*
*
*
*
*
* ** *
* ** *
* * * *
* * T R I G O N O M E T R Y A N D M A T H C O D E * *
* * * *
* ** *
* ** *
*
*
* MLT IS DONE BY 'MR' INSTRUCTION HERE, FOR THE MLT SUBROUTINE
* SEE THE OTHER IBM 360 SIMULATOR'S H-DIAL PROGRAM
*
* DIV IS DONE BY 'DR' INSTRUCTION HERE, FOR THE DIV SUBROUTINE
* SEE THE OTHER IBM 360 SIMULATOR'S H-DIAL PROGRAM
*
* SIN INVOKED BY BALR 14,45
* COS INVOKED BY BALR 14,45
* TAN INVOKED BY BALR 14,45
* ATN INVOKED BY BALR 14,45
*
*
* ** *
* BEGIN SIN SUBROUTINE TESTS OK JAN 18 2009 * *
* ** *
* INPUT R1 EQUALS THE NUMBER WE WANT SIN OF * *
* OUTPUT R1 EQUALS THE SIN OF THE INPUT PARAMETER * *
* USES R2 AS A WORKING REGISTER * *
* ** *
 CNOP 0,8
SINSUBR CSECT ,
 USING *,15 CALLED WITH BALR
SIN ST 2,SINWORK SAVE WORK REGISTER
 AR 1,1 ANGLE IS NOW ANGLE * 2
 AR 1,1 ANGLE IS NOW ANGLE * 4
 L 2,SIN00ADR R2 IS SIN TABLE OF FULL WORDS
 AR 2,1 R2 IS NOW OUR ENTRY
 L 1,0(2) R1 NOW IS SIN OF ANGLE
 L 2,SINWORK RELOAD WORK REGISTER

LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

31

 BR 14 RETURN
*
 CNOP 0,4
SINWORK DC F'0' SAVED WORKING REGISTER
SIN00ADR DC A(SINTABLE) ADDRESS OF TABLE
*
*
*
* ** *
* BEGIN COS SUBROUTINE TESTS OK JAN 19 2009 * *
* ** *
* INPUT R1 EQUALS THE NUMBER WE WANT COS OF * *
* OUTPUT R1 EQUALS THE COS OF THE INPUT PARAMETER * *
* USES R2 AS A WORKING REGISTER * *
* ** *
 CNOP 0,8
COSSUBR CSECT ,
 USING *,15
COS ST 2,COSWORK SAVE WORK REGISTER
 LA 2,90 PLACE 90 IN A REGISTER
 SR 2,1 RS IS NOW 90-INPUT ANGLE
 AR 2,2 ANGLE IS NOW (90-ANGLE) * 2
 AR 2,2 ANGLE IS NOW (90-ANGLE) * 4
 L 1,COSINADR R1 IS SIN TABLE OF FULL WORDS
 AR 2,1 R2 IS NOW OUR ENTRY
 L 1,0(2) R1 NOW IS SIN OF ANGLE
 L 2,COSWORK RELOAD WORK REGISTER
 BR 14 RETURN
*
 CNOP 0,4
COSWORK DC F'0' SAVED WORKING REGISTER
COSINADR DC A(SINTABLE) ADDRESS OF SIN TABLE
*
*
*
* ** *
* BEGIN TAN SUBROUTINE TESTS OK JAN 18 2009 * *
* ** *
* INPUT R1 EQUALS THE NUMBER WE WANT TAN OF * *
* OUTPUT R1 EQUALS THE TAN OF THE INPUT PARAMETER * *
* USES R2 AS A WORKING REGISTER * *
* ** *
 CNOP 0,8
TANSUBR CSECT ,
 USING *,15
TAN ST 2,TANWORK SAVE WORK REGISTER
 AR 1,1 ANGLE IS NOW ANGLE * 2
 AR 1,1 ANGLE IS NOW ANGLE * 4
 L 2,TAN00ADR R2 IS TAN TABLE OF FULL WORDS
 AR 2,1 R2 IS NOW OUR ENTRY
 L 1,0(2) R1 NOW IS TAN OF ANGLE
 L 2,TANWORK RELOAD WORK REGISTER
 BR 14 RETURN
*
 CNOP 0,4
TANWORK DC F'0' SAVED WORKING REGISTER
TAN00ADR DC A(TANTABLE) ADDRESS OF TAN TABLE
*
*
*
*
* ** *
* BEGIN ATN SUBROUTINE TESTS OK JAN 19 2009 * *
* ** *
* INPUT R1 EQUALS A TAN WE WANT THE ANGLE OF * *
* OUTPUT R1 EQUALS THE ANGLE OF THE INPUT TAN PARAMETER* *
* USES WORKING REGISTERS * *
* R2 IS ANGLE SO FAR * *
* R3 IS ENTRY IN TAN TABLE * *
* ** *
*

LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

32

ATNSUBR CSECT ,
 USING *,15
ATN ST 2,ATNWORK2 SAVE WORK REGISTERS
 ST 3,ATNWORK3 FOR LATER
* SHOULD USE STM/LM BUT SIM NOT DOING IT YET
 LA 2,0 R2 IS RESULTING ANGLE
 L 3,ATN00ADR R3 IS TAN TABLE OF FULL WORDS
ATNLOOP ST 2,ATNANGL SAVE R2 ANGLE SO FAR IN ATNANGL
 C 2,ATN89 IS RESULTING ANGLE 90 YET
 BH ATNEXIT9 EXIT WITH R2 AT 90
 C 1,0(3) COMPARE INPUT TO TABLE CONTENT
 BL ATNEXIT INPUT LOW SO EXIT
 BE ATNEXIT INPUT EQUAL SO EXIT
* INPUT IS LOWER THAN TABLE SO TRY AGAIN
ATNNEXT LA 3,4(3) R3 ADD 4 TO TABLE ENTRY FOR NEXT
 LA 2,1(2) R2 ADD 1 TO CURRENT ANGLE
 B ATNLOOP AND RRY AGAIN
*
ATNEXIT9 LA 1,90 SET RESULT TO 90
 ST 1,ATNANGL SAVE IT THEN EXIT AS BELOW
ATNEXIT L 2,ATNWORK2 RELOAD WORK REGISTERS
 L 3,ATNWORK3 TO STATUS QUO ANTE
* SHOULD USE STM/LM BUT SIM NOT DOING IT YET
 L 1,ATNANGL LOAD ANGLE FOR RETURN
 BR 14 RETURN
*
 CNOP 0,4
ATNWORK2 DC F'0' SAVED WORKING REGISTERS
ATNWORK3 DC F'0'
ATNANGL DC F'0' ANGLE THAT RESULTS FROM TAN
ATN89 DC F'89' IF HIGHER THAN ANGLE THEN EXIT
ATN00ADR DC A(TANTABLE) ADDRESS OF TAN TABLE
*
*
*
*
*
*
* - - T A B L E S F O R S I N A N D C O S I N E - -
*
*
 CNOP 0,8
SINTABLE CSECT ,
SIN00 DC F'0000' EACH ENTRY IS 1000 * SIN
 DC F'0017'
 DC F'0034'
 DC F'0052'
 DC F'0069'
 DC F'0087'
 DC F'0104'
. . .
. . .
 DC F'0996'
 DC F'0997'
 DC F'0998'
 DC F'0999'
 DC F'0999'
 DC F'1000'
* ** *
* END SIN FUNCTION SUBROUTINE * *
* ** *
*
*
* - - T A B L E S F O R T A N A N D A R C T A N - - - -
*
*
 CNOP 0,8
TANTABLE CSECT ,
TAN00 DC F'000000' EACH ENTRY IS 1000 * TAN
 DC F'000017'
 DC F'000034'

LAZARUS based IBM SYSTEM 360 simulator

www.illustratingshadows.com
July 6, 2009 Simon Wheaton-Smith

33

 DC F'000052'
 DC F'000069'
 DC F'000087'
. . .
. . .
 DC F'011430'
 DC F'014300'
 DC F'019081'
 DC F'028636'
 DC F'057289'
 DC F'999999'
*
*
* ** *
* FINAL FOOT NOTES * *
* ** *
* HERE TO SAVE MEMORY IN MAIN CSECT * *
* ** *
*
ENDNOTES CSECT , ENTER
 USING *,15 SET USING
 SVC 3 BLANK LINE
 SVC 3 BLANK LINE
 SVC 3 BLANK LINE
 OFSET 15 SHIFT PRINT LINE BY 15 BYTES
 L 1,M1HDRADR TEXT
 LA 0,72 SIZE
 SVC 1 PRINT TEXT
 SVC 3 BLANK LINE
 LA 0,72 R0 IS SIZE
 L 1,M9HDRADR R1 IS TEST
 SVC 1 ADVISE ON EAST/WEST DIALS
 SVC 3 BLANK LINE
*
 LA 0,72 R0 IS SIZE
 L 1,MAHDRADR R1 IS TEST
 SVC 1 ADVISE ON WEB SITE
 SVC 3 BLANK LINE
*
 LA 0,72 R0 IS SIZE
 L 1,MBHDRADR R1 IS TEST
 SVC 1 ADVISE ON NOTES
 SVC 3 ON WEB SITE
 BR 14 EXIT
*
M1HDRADR DC A(M1HDR) ADDRESS OF HEADER *=====*
M9HDRADR DC A(M9HDR) ADVISOR
MAHDRADR DC A(MAHDR) ADVISOR
MBHDRADR DC A(MBHDR) ADVISOR
*
 END

